Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 1, Janvier 2014
Page(s) 93 - 98
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143001019
Publié en ligne 24 janvier 2014
  1. Geldard FA, Sherrick CE. The cutaneous rabbit: a perceptual illusion. Science 1972 ; 178 : 178–179. [CrossRef] [PubMed]
  2. Blankenburg F, Ruff CC, Deichmann R, et al. The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biol 2006 ; 4 : e69. [CrossRef] [PubMed]
  3. Miyazaki M, Hirashima M, Nozaki D. The cutaneous rabbit hopping out of the body. J Neurosci 2010 ; 30 : 1856–1860. [CrossRef] [PubMed]
  4. Gao P, Bermejo R, Zeigler PH. Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J Neurosci 2001 ; 21 : 5374–5380. [PubMed]
  5. Woolsey TA, van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 1970 ; 17 : 205–242. [CrossRef] [PubMed]
  6. Killackey HP, Belford GR. The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol 1979 ; 183 : 285–303. [CrossRef] [PubMed]
  7. Simons DJ. Temporal and spatial integration in the rat SI vibrissa cortex. J Neurophysiol 1985 ; 54 : 615–635. [PubMed]
  8. Carvell GE, Simons DJ. Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 1990 ; 10 : 2638–2648. [PubMed]
  9. Ritt JT, Andermann ML, Moore CI. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing Rats. Neuron 2008 ; 57 : 599–613. [CrossRef] [PubMed]
  10. Moore CI, Nelson SB. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 1998 ; 80 : 2882–2892. [PubMed]
  11. Zhu JJ, Connors BW. Intrinsic firing patterns and whisker evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 1999 ; 81 : 1171–1183. [PubMed]
  12. Erchova I, Jacob V, Ego-Stengel V, et al. Multiwhisker suppressive interactions in the rat barrel cortex described by a MAX operator. Soc Neurosci Abstract 2006 ; 144 : 17.
  13. Petersen RS, Diamond ME. Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J Neurosci 2000 ; 20 : 6135–6143. [PubMed]
  14. Mirabella G, Battiston S, Diamond ME. Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 2001 ; 11 : 164–170. [CrossRef] [PubMed]
  15. Bringuier V, Chavane F, Glaeser L, et al. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 1999 ; 283 : 695–699. [CrossRef] [PubMed]
  16. Shimegi S, Ichikawa T, Akasaki T, et al. Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 1999 ; 19 : 10164–10175. [PubMed]
  17. Ego-Stengel V, Souza TM, Jacob V, et al. Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. J Neurophysiol 2005 ; 93 : 1450–1467. [CrossRef] [PubMed]
  18. Jacob V, Le Cam J, Ego-Stengel V, et al. Emergent properties of tactile scenes selectively activate barrel cortex neurons. Neuron 2008 ; 60 : 1112–1125. [CrossRef] [PubMed]
  19. Jacob V, Estebanez L, Le Cam J, et al. The matrix: a new tool for probing the whisker-to-barrel system with natural stimuli. J Neurosci Methods 2010 ; 189 : 65–74. [CrossRef] [PubMed]
  20. Ego-Stengel V, Le Cam J, Shulz DE. Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system. J Neurosci 2012 ; 32 : 3339–3351. [CrossRef] [PubMed]
  21. Estebanez L, El Boustani S, Destexhe A, et al. Correlated input reveals coexisting coding schemes in a sensory cortex. Nat Neurosci 2012 ; 12 : 1691–1699. [CrossRef]
  22. Op de Beeck HP, Haushofer J, Kanwisher NG. Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 2008 ; 9 : 123–135. [CrossRef] [PubMed]
  23. Geldard, FA. Saltation in somesthesis. Psychol Bull 1982 ; 92 : 136–175. [CrossRef] [PubMed]
  24. Jones JP, Palmer LA. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 1987 ; 58 : 1187–1211. [PubMed]
  25. DeAngelis GC, Ohzawa I, Freeman RD. Receptive-field dynamics in the central visual pathways. Trends Neurosci 1995 ; 18 : 451–458. [CrossRef] [PubMed]
  26. Jenison RL, Schnupp JW, Reale RA, et al. Auditory space-time receptive field dynamics revealed by spherical white-noise analysis. J Neurosci 2001 ; 21 : 4408–4415. [PubMed]
  27. Ringach DL. Mapping receptive fields in primary visual cortex. J Physiol 2004 ; 558 : 717–728. [CrossRef] [PubMed]
  28. Rust NC, Schwartz O, Movshon JA, et al. Spatiotemporal elements of macaque v1 receptive fields. Neuron 2005 ; 46 : 945–956. [CrossRef] [PubMed]
  29. Schwartz O, Pillow JW, Rust NC, et al. Spike-triggered neural characterization. J Vision 2006 ; 6 : 484–507. [CrossRef]
  30. Geffen MN, Broome BM, Laurent G, et al. Neural encoding of rapidly fluctuating odors. Neuron 2009 ; 61 : 570–586. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.