Med Sci (Paris)
Volume 29, Number 12, Décembre 2013
Le réseau international des Instituts Pasteur
Page(s) 1151 - 1160
Section M/S Revues
Published online 20 December 2013
  1. WHO. Control of the leishmaniases. World Health Organ Tech Rep Ser 2010 : XII–XIII : 1–186. [Google Scholar]
  2. Pearson RD, Sousa AQ. Clinical spectrum of Leishmaniasis. Clin Infect Dis 1996 ; 22 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  3. Louzir H, Dellagi K. Les leishmanioses : un modèle d’étude des interactions hôte-parasite ; implications pour la maladie humaine. Ann Inst Pasteur Actualités 1999 ; 10 : 67–80. [CrossRef] [Google Scholar]
  4. Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide, global estimates of its incidence. PLoS One 2012 ; 7 : e35671. [CrossRef] [PubMed] [Google Scholar]
  5. Reithinger R, Dujardin JC, Louzir H, et al. Cutaneous leishmaniasis. Lancet Infect Dis 2007 ; 7 : 581–596. [Google Scholar]
  6. Boubidi SC, Benallal K, Boudrissa A, et al. Phlebotomus sergenti (Parrot, 1917) identified as Leishmania killicki host in Ghardaia, south Algeria. Microbes Infect 2011 ; 13 : 691–696. [Google Scholar]
  7. Bousslimi N, Ben-Ayed S, Ben-Abda I, et al. Natural infection of North African gundi (Ctenodactylus gundi) by Leishmania tropica in the focus of cutaneous leishmaniasis, Southeast Tunisia. Am J Trop Med Hyg 2012 ; 86 : 962–965. [CrossRef] [PubMed] [Google Scholar]
  8. Tabbabi A, Bousslimi N, Rhim A, et al. First report on natural infection of Phlebotomus sergenti with Leishmania promastigotes in the cutaneous leishmaniasis focus in southeastern Tunisia. Am J Trop Med Hyg 2011 ; 85 : 646–647. [CrossRef] [PubMed] [Google Scholar]
  9. Gonzalez R, De Sousa L, Devera R, et al. Seasonal and nocturnal domiciliary human landing/biting behaviour of Lutzomyia (Lutzomyia) evansi and Lutzomyia (Psychodopygus) panamensis (Diptera ; Psychodidae) in a periurban area of a city on the Caribbean coast of eastern Venezuela (Barcelona ; Anzoategui State). Trans R Soc Trop Med Hyg 1999 ; 93 : 361–364. [CrossRef] [PubMed] [Google Scholar]
  10. Lindgren E, Andersson Y, Suk JE, et al. Public health. Monitoring EU emerging infectious disease risk due to climate change. Science 2012 ; 336 : 418–419. [CrossRef] [PubMed] [Google Scholar]
  11. Menn B, Lorentz S, Naucke TJ., Imported travelling dogs as carriers of canine vector-borne pathogens in Germany. Parasit Vectors 2010 ; 3 : 34. [CrossRef] [PubMed] [Google Scholar]
  12. Naucke TJ, Menn B, Massberg D, Lorentz S., Sandflies leishmaniasis in Germany. Parasitol Res 2008 ; 103 : suppl 1 S65–S68. [Google Scholar]
  13. Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med 2007 ; 357 : 1018–1027. [CrossRef] [PubMed] [Google Scholar]
  14. Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis : what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 2007 ; 5 : 873–882. [CrossRef] [PubMed] [Google Scholar]
  15. Oliveira E, Saliba SW, Saliba JW, Rabello A. Validation of a direct agglutination test prototype kit for the diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg 2013 ; 107 : 243–247. [CrossRef] [PubMed] [Google Scholar]
  16. Cunningham J, Hasker E, Das P, et al. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Infect Dis 2012 ; 55 : 1312–1319. [CrossRef] [PubMed] [Google Scholar]
  17. Saghrouni F, Gaied-Meksi S, Fathallah A, et al. Immunochromatographic rK39 strip test in the serodiagnosis of visceral leishmaniasis in Tunisia. Trans R Soc Trop Med Hyg 2009 ; 103 : 1273–1278. [CrossRef] [PubMed] [Google Scholar]
  18. Attar ZJ, Chance ML, el-Safi S, et al. Latex agglutination test for the detection of urinary antigens in visceral leishmaniasis. Acta Trop 2001 ; 78 : 11–16. [CrossRef] [PubMed] [Google Scholar]
  19. Abeijon C, Kashino SS, Silva FO, et al. Identification and diagnostic utility of Leishmania infantum proteins found in urine samples from patients with visceral leishmaniasis. Clin Vaccine Immunol 2012 ; 19 : 935–943. [CrossRef] [PubMed] [Google Scholar]
  20. Sarkari B, Chance M, Hommel M. Antigenuria in visceral leishmaniasis : detection and partial characterisation of a carbohydrate antigen. Acta Trop 2002 ; 82 : 339–348. [CrossRef] [PubMed] [Google Scholar]
  21. Galai Y, Chabchoub N, Ben-Abid M, et al. Diagnosis of mediterranean visceral leishmaniasis by detection of Leishmania antibodies and Leishmania DNA in oral fluid samples collected using an Oracol device. J Clin Microbiol 2011 ; 49 : 3150–3153. [CrossRef] [PubMed] [Google Scholar]
  22. Huang H, Mackeen MM, Cook M, et al. Proteomic identification of host, parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria. Malar J 2012 ; 11 : 178. [CrossRef] [PubMed] [Google Scholar]
  23. Sinha PK, Jha TK, Thakur CP, et al. Phase 4 pharmacovigilance trial of paromomycin injection for the treatment of visceral leishmaniasis in India. J Trop Med 2011 ; 2011 : 645203. [CrossRef] [PubMed] [Google Scholar]
  24. Hendrickx S, Inocencio da Luz RA, Bhandari V, et al. Experimental induction of paromomycin resistance in antimony-resistant strains of L. donovani : outcome dependent on in vitro selection protocol. PLoS Negl Trop Dis 2012 ; 6 : e1664. [CrossRef] [PubMed] [Google Scholar]
  25. Jhingran A, Chawla B, Saxena S, et al. Paromomycin : uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 2009 ; 164 : 111–117. [CrossRef] [PubMed] [Google Scholar]
  26. Perez-Victoria FJ, Castanys S, Gamarro F. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 2003 ; 47 : 2397–2403. [Google Scholar]
  27. Perez-Victoria FJ, Sanchez-Canete MP, Seifert K, et al. Mechanisms of experimental resistance of Leishmania to miltefosine : Implications for clinical use. Drug Resist Updat 2006 ; 9 : 26–39. [Google Scholar]
  28. Berman J. Visceral leishmaniasis in the New World and Africa. Indian J Med Res 2006 ; 123 : 289–294. [PubMed] [Google Scholar]
  29. Hem S, Gherardini PF, Osorio y Fortea J, et al. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 2010 ; 10 : 3868–3883. [CrossRef] [PubMed] [Google Scholar]
  30. Morales MA, Watanabe R, Laurent C, et al. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 2008 ; 8 : 350–363. [CrossRef] [PubMed] [Google Scholar]
  31. Palmeri A, Gherardini PF, Tsigankov P, et al. PhosTryp : a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae. BMC Genomics 2011 ; 12 : 614. [CrossRef] [PubMed] [Google Scholar]
  32. Tsigankov P, Gherardini PF, Helmer-Citterich M, Zilberstein D. What has proteomics taught us about Leishmania development? Parasitology 2012 ; 139 : 1146–1157. [CrossRef] [PubMed] [Google Scholar]
  33. Foucher AL, Rachidi N, Gharbi S, et al. Apoptotic marker expression in the absence of cell death in staurosporine-treated Leishmania donovani. Antimicrob Agents Chemother 2013 ; 57 : 1252–1261. [CrossRef] [PubMed] [Google Scholar]
  34. Horjales S, Schmidt-Arras D, Limardo RR, et al. The crystal structure of the MAP kinase LmaMPK10 from Leishmania major reveals parasite-specific features and regulatory mechanisms. Structure 2012 ; 20 : 1649–1660. [CrossRef] [PubMed] [Google Scholar]
  35. Morales MA, Pescher P, Spath GF. Leishmania major MPK7 protein kinase activity inhibits intracellular growth of the pathogenic amastigote stage. Eukaryot Cell 2010 ; 9 : 22–30. [CrossRef] [PubMed] [Google Scholar]
  36. Aulner N, Danckaert A, Rouault-Hardoin E, et al. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes : application to anti-leishmanial drug discovery Plos Negl Trop Dis 2013 ; 7 : e2154. [CrossRef] [PubMed] [Google Scholar]
  37. Ben Salah A, Ben Messaoud N, Guedri E, et al. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. N Engl J Med 2013 ; 368 : 524–532. [CrossRef] [PubMed] [Google Scholar]
  38. Lecoeur H, Buffet P, Morizot G, et al. Optimization of topical therapy for Leishmania major localized cutaneous leishmaniasis using a reliable C57BL/6 Model. PLoS Negl Trop Dis 2007 ; 1 : e34. [CrossRef] [PubMed] [Google Scholar]
  39. Lecoeur H, Buffet PA, Milon G, Lang T. Early curative applications of the aminoglycoside WR279396 on an experimental Leishmania major-loaded cutaneous site do not impair the acquisition of immunity. Antimicrob Agents Chemother 2010 ; 54 : 984–990. [CrossRef] [PubMed] [Google Scholar]
  40. Barhoumi M, Meddeb-Garnaoui A, Kyle Tanner N, et al. DEAD-box proteins, like Leishmania eIF4A, modulate interleukin (IL)-12, IL-10 and tumor necrosis factor-alpha production by human monocytes. Parasite Immunol 2013 ; 35 : 199–199. [CrossRef] [Google Scholar]
  41. Barhoumi M, Tanner NK, Banroques J, et al. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 2006 ; 273 : 5086–5100. [CrossRef] [PubMed] [Google Scholar]
  42. Xingi E, Smirlis D, Myrianthopoulos V, et al. 6-Br-5methylindirubin-3’oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death : exploitation of GSK-3 for treating leishmaniasis. Int J Parasitol 2009 ; 39 : 1289–1303. [Google Scholar]
  43. Siqueira-Neto JL, Moon S, Jang J, et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis 2012 ; 6 : e1671. [CrossRef] [PubMed] [Google Scholar]
  44. Siqueira-Neto JL, Song OR, Oh H, et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis 2010 ; 4 : e675. [CrossRef] [PubMed] [Google Scholar]
  45. Mougneau E, Bihl F, Glaichenhaus N. Cell biology and immunology of Leishmania. Immunol Rev 2011 ; 240 : 286–296. [CrossRef] [PubMed] [Google Scholar]
  46. Tacchini-Cottier F, Weinkopff T, Launois P., Does T helper differentiation correlate with resistance or susceptibility to infection with L. major? Some insights from the murine model. Front Immunol 2012 ; 3 : 32. [CrossRef] [PubMed] [Google Scholar]
  47. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002 ; 2 : 845–858. [Google Scholar]
  48. Stager S, Rafati S., CD8+ T cells in Leishmania infections : friends or foes? Front Immunol, 2012 ; 3 : 5. [CrossRef] [PubMed] [Google Scholar]
  49. Sassi A, Louzir H, Ben Salah A, et al. Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia. Clin Exp Immunol 1999 ; 116 : 127–132. [PubMed] [Google Scholar]
  50. Castellano LR, Filho DC, Argiro L, et al. Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production. Hum Immunol 2009 ; 70 : 383–390. [CrossRef] [PubMed] [Google Scholar]
  51. Das A, Ali N., Vaccine development against Leishmania donovani. Front Immunol 2012 ; 3 : 99. [PubMed] [Google Scholar]
  52. Raman VS, Duthie MS, Fox CB, et al. Adjuvants for Leishmania vaccines : from models to clinical application. Front Immunol 2012 ; 3 : 144. [CrossRef] [PubMed] [Google Scholar]
  53. Singh B, Sundar S. Leishmaniasis : vaccine candidates and perspectives. Vaccine 2012 ; 30 : 3834–3842. [CrossRef] [PubMed] [Google Scholar]
  54. Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 2012 ; 30 : 134–141. [CrossRef] [PubMed] [Google Scholar]
  55. Maroof A, Brown N, Smith B, et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis 2012 ; 205 : 853–863. [CrossRef] [PubMed] [Google Scholar]
  56. Gomes R, Oliveira F., The immune response to sand fly salivary proteins, its influence on Leishmania immunity. Front Immunol 2012 ; 3 : 110. [CrossRef] [PubMed] [Google Scholar]
  57. Mbow ML, Bleyenberg JA, Hall LR, Titus RG. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 1998 ; 161 : 5571–5577. [PubMed] [Google Scholar]
  58. Marzouki S, Ben Ahmed M, Boussoffara T, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg 2011 ; 84 : 653–661. [CrossRef] [PubMed] [Google Scholar]
  59. Marzouki S, Abdeladhim M, Abdessalem CB, et al. Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans. PLoS Negl Trop Dis 2012 ; 6 : e1911. [CrossRef] [PubMed] [Google Scholar]
  60. Abdeladhim M, Jochim RC, Ben Ahmed M, et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain) : the search for sand fly-secreted immunogenic proteins for humans. PLoS One 2012 ; 7 : e47347. [CrossRef] [PubMed] [Google Scholar]
  61. Nicolle C. Sur trois cas d’infection splénique infantile à corps de Leishman observés en Tunisie. Arch Inst Pasteur Tunis 1908 ; 1 : 1–26. [Google Scholar]
  62. Nicolle C, Compte C. Origine canine du Kala-azar. Arch Inst Pasteur Tunis 1908 ; 1 : 109–112. [Google Scholar]
  63. Theodorides J. Historical note on the discovery of cutaneous leishmaniasis transmission by Phlebotomus. Bull Soc Pathol Exot 1997 ; 90 : 177–178. [PubMed] [Google Scholar]
  64. Cox FE. History of human parasitology. Clin Microbiol Rev 2002 ; 15 : 595–612. [CrossRef] [PubMed] [Google Scholar]
  65. Ul Bari U. Chronology of cutaneous leishmaniasis : an overview of the history of the disease. J Pakist Assoc Dermatol 2006 ; 16 : 24–27. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.