Le réseau international des Instituts Pasteur
Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 12, Décembre 2013
Le réseau international des Instituts Pasteur
Page(s) 1151 - 1160
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132912020
Publié en ligne 20 décembre 2013
  1. WHO. Control of the leishmaniases. World Health Organ Tech Rep Ser 2010 : XII–XIII : 1–186.
  2. Pearson RD, Sousa AQ. Clinical spectrum of Leishmaniasis. Clin Infect Dis 1996 ; 22 : 1–13. [CrossRef] [PubMed]
  3. Louzir H, Dellagi K. Les leishmanioses : un modèle d’étude des interactions hôte-parasite ; implications pour la maladie humaine. Ann Inst Pasteur Actualités 1999 ; 10 : 67–80. [CrossRef]
  4. Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide, global estimates of its incidence. PLoS One 2012 ; 7 : e35671. [CrossRef] [PubMed]
  5. Reithinger R, Dujardin JC, Louzir H, et al. Cutaneous leishmaniasis. Lancet Infect Dis 2007 ; 7 : 581–596. [CrossRef] [PubMed]
  6. Boubidi SC, Benallal K, Boudrissa A, et al. Phlebotomus sergenti (Parrot, 1917) identified as Leishmania killicki host in Ghardaia, south Algeria. Microbes Infect 2011 ; 13 : 691–696. [CrossRef] [PubMed]
  7. Bousslimi N, Ben-Ayed S, Ben-Abda I, et al. Natural infection of North African gundi (Ctenodactylus gundi) by Leishmania tropica in the focus of cutaneous leishmaniasis, Southeast Tunisia. Am J Trop Med Hyg 2012 ; 86 : 962–965. [CrossRef] [PubMed]
  8. Tabbabi A, Bousslimi N, Rhim A, et al. First report on natural infection of Phlebotomus sergenti with Leishmania promastigotes in the cutaneous leishmaniasis focus in southeastern Tunisia. Am J Trop Med Hyg 2011 ; 85 : 646–647. [CrossRef] [PubMed]
  9. Gonzalez R, De Sousa L, Devera R, et al. Seasonal and nocturnal domiciliary human landing/biting behaviour of Lutzomyia (Lutzomyia) evansi and Lutzomyia (Psychodopygus) panamensis (Diptera ; Psychodidae) in a periurban area of a city on the Caribbean coast of eastern Venezuela (Barcelona ; Anzoategui State). Trans R Soc Trop Med Hyg 1999 ; 93 : 361–364. [CrossRef] [PubMed]
  10. Lindgren E, Andersson Y, Suk JE, et al. Public health. Monitoring EU emerging infectious disease risk due to climate change. Science 2012 ; 336 : 418–419. [CrossRef] [PubMed]
  11. Menn B, Lorentz S, Naucke TJ., Imported travelling dogs as carriers of canine vector-borne pathogens in Germany. Parasit Vectors 2010 ; 3 : 34. [CrossRef] [PubMed]
  12. Naucke TJ, Menn B, Massberg D, Lorentz S., Sandflies leishmaniasis in Germany. Parasitol Res 2008 ; 103 : suppl 1 S65–S68. [CrossRef] [PubMed]
  13. Hotez PJ, Molyneux DH, Fenwick A, et al. Control of neglected tropical diseases. N Engl J Med 2007 ; 357 : 1018–1027. [CrossRef] [PubMed]
  14. Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis : what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 2007 ; 5 : 873–882. [CrossRef] [PubMed]
  15. Oliveira E, Saliba SW, Saliba JW, Rabello A. Validation of a direct agglutination test prototype kit for the diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg 2013 ; 107 : 243–247. [CrossRef] [PubMed]
  16. Cunningham J, Hasker E, Das P, et al. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Infect Dis 2012 ; 55 : 1312–1319. [CrossRef] [PubMed]
  17. Saghrouni F, Gaied-Meksi S, Fathallah A, et al. Immunochromatographic rK39 strip test in the serodiagnosis of visceral leishmaniasis in Tunisia. Trans R Soc Trop Med Hyg 2009 ; 103 : 1273–1278. [CrossRef] [PubMed]
  18. Attar ZJ, Chance ML, el-Safi S, et al. Latex agglutination test for the detection of urinary antigens in visceral leishmaniasis. Acta Trop 2001 ; 78 : 11–16. [CrossRef] [PubMed]
  19. Abeijon C, Kashino SS, Silva FO, et al. Identification and diagnostic utility of Leishmania infantum proteins found in urine samples from patients with visceral leishmaniasis. Clin Vaccine Immunol 2012 ; 19 : 935–943. [CrossRef] [PubMed]
  20. Sarkari B, Chance M, Hommel M. Antigenuria in visceral leishmaniasis : detection and partial characterisation of a carbohydrate antigen. Acta Trop 2002 ; 82 : 339–348. [CrossRef] [PubMed]
  21. Galai Y, Chabchoub N, Ben-Abid M, et al. Diagnosis of mediterranean visceral leishmaniasis by detection of Leishmania antibodies and Leishmania DNA in oral fluid samples collected using an Oracol device. J Clin Microbiol 2011 ; 49 : 3150–3153. [CrossRef] [PubMed]
  22. Huang H, Mackeen MM, Cook M, et al. Proteomic identification of host, parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria. Malar J 2012 ; 11 : 178. [CrossRef] [PubMed]
  23. Sinha PK, Jha TK, Thakur CP, et al. Phase 4 pharmacovigilance trial of paromomycin injection for the treatment of visceral leishmaniasis in India. J Trop Med 2011 ; 2011 : 645203. [CrossRef] [PubMed]
  24. Hendrickx S, Inocencio da Luz RA, Bhandari V, et al. Experimental induction of paromomycin resistance in antimony-resistant strains of L. donovani : outcome dependent on in vitro selection protocol. PLoS Negl Trop Dis 2012 ; 6 : e1664. [CrossRef] [PubMed]
  25. Jhingran A, Chawla B, Saxena S, et al. Paromomycin : uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 2009 ; 164 : 111–117. [CrossRef] [PubMed]
  26. Perez-Victoria FJ, Castanys S, Gamarro F. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 2003 ; 47 : 2397–2403. [CrossRef] [PubMed]
  27. Perez-Victoria FJ, Sanchez-Canete MP, Seifert K, et al. Mechanisms of experimental resistance of Leishmania to miltefosine : Implications for clinical use. Drug Resist Updat 2006 ; 9 : 26–39. [CrossRef] [PubMed]
  28. Berman J. Visceral leishmaniasis in the New World and Africa. Indian J Med Res 2006 ; 123 : 289–294. [PubMed]
  29. Hem S, Gherardini PF, Osorio y Fortea J, et al. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 2010 ; 10 : 3868–3883. [CrossRef] [PubMed]
  30. Morales MA, Watanabe R, Laurent C, et al. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 2008 ; 8 : 350–363. [CrossRef] [PubMed]
  31. Palmeri A, Gherardini PF, Tsigankov P, et al. PhosTryp : a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae. BMC Genomics 2011 ; 12 : 614. [CrossRef] [PubMed]
  32. Tsigankov P, Gherardini PF, Helmer-Citterich M, Zilberstein D. What has proteomics taught us about Leishmania development? Parasitology 2012 ; 139 : 1146–1157. [CrossRef] [PubMed]
  33. Foucher AL, Rachidi N, Gharbi S, et al. Apoptotic marker expression in the absence of cell death in staurosporine-treated Leishmania donovani. Antimicrob Agents Chemother 2013 ; 57 : 1252–1261. [CrossRef] [PubMed]
  34. Horjales S, Schmidt-Arras D, Limardo RR, et al. The crystal structure of the MAP kinase LmaMPK10 from Leishmania major reveals parasite-specific features and regulatory mechanisms. Structure 2012 ; 20 : 1649–1660. [CrossRef] [PubMed]
  35. Morales MA, Pescher P, Spath GF. Leishmania major MPK7 protein kinase activity inhibits intracellular growth of the pathogenic amastigote stage. Eukaryot Cell 2010 ; 9 : 22–30. [CrossRef] [PubMed]
  36. Aulner N, Danckaert A, Rouault-Hardoin E, et al. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes : application to anti-leishmanial drug discovery Plos Negl Trop Dis 2013 ; 7 : e2154. [CrossRef] [PubMed]
  37. Ben Salah A, Ben Messaoud N, Guedri E, et al. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. N Engl J Med 2013 ; 368 : 524–532. [CrossRef] [PubMed]
  38. Lecoeur H, Buffet P, Morizot G, et al. Optimization of topical therapy for Leishmania major localized cutaneous leishmaniasis using a reliable C57BL/6 Model. PLoS Negl Trop Dis 2007 ; 1 : e34. [CrossRef] [PubMed]
  39. Lecoeur H, Buffet PA, Milon G, Lang T. Early curative applications of the aminoglycoside WR279396 on an experimental Leishmania major-loaded cutaneous site do not impair the acquisition of immunity. Antimicrob Agents Chemother 2010 ; 54 : 984–990. [CrossRef] [PubMed]
  40. Barhoumi M, Meddeb-Garnaoui A, Kyle Tanner N, et al. DEAD-box proteins, like Leishmania eIF4A, modulate interleukin (IL)-12, IL-10 and tumor necrosis factor-alpha production by human monocytes. Parasite Immunol 2013 ; 35 : 199–199. [CrossRef]
  41. Barhoumi M, Tanner NK, Banroques J, et al. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 2006 ; 273 : 5086–5100. [CrossRef] [PubMed]
  42. Xingi E, Smirlis D, Myrianthopoulos V, et al. 6-Br-5methylindirubin-3’oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death : exploitation of GSK-3 for treating leishmaniasis. Int J Parasitol 2009 ; 39 : 1289–1303. [CrossRef] [PubMed]
  43. Siqueira-Neto JL, Moon S, Jang J, et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis 2012 ; 6 : e1671. [CrossRef] [PubMed]
  44. Siqueira-Neto JL, Song OR, Oh H, et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis 2010 ; 4 : e675. [CrossRef] [PubMed]
  45. Mougneau E, Bihl F, Glaichenhaus N. Cell biology and immunology of Leishmania. Immunol Rev 2011 ; 240 : 286–296. [CrossRef] [PubMed]
  46. Tacchini-Cottier F, Weinkopff T, Launois P., Does T helper differentiation correlate with resistance or susceptibility to infection with L. major? Some insights from the murine model. Front Immunol 2012 ; 3 : 32. [CrossRef] [PubMed]
  47. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002 ; 2 : 845–858. [CrossRef] [PubMed]
  48. Stager S, Rafati S., CD8+ T cells in Leishmania infections : friends or foes? Front Immunol, 2012 ; 3 : 5. [CrossRef] [PubMed]
  49. Sassi A, Louzir H, Ben Salah A, et al. Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia. Clin Exp Immunol 1999 ; 116 : 127–132. [PubMed]
  50. Castellano LR, Filho DC, Argiro L, et al. Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-gamma production. Hum Immunol 2009 ; 70 : 383–390. [CrossRef] [PubMed]
  51. Das A, Ali N., Vaccine development against Leishmania donovani. Front Immunol 2012 ; 3 : 99. [PubMed]
  52. Raman VS, Duthie MS, Fox CB, et al. Adjuvants for Leishmania vaccines : from models to clinical application. Front Immunol 2012 ; 3 : 144. [CrossRef] [PubMed]
  53. Singh B, Sundar S. Leishmaniasis : vaccine candidates and perspectives. Vaccine 2012 ; 30 : 3834–3842. [CrossRef] [PubMed]
  54. Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 2012 ; 30 : 134–141. [CrossRef] [PubMed]
  55. Maroof A, Brown N, Smith B, et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis 2012 ; 205 : 853–863. [CrossRef] [PubMed]
  56. Gomes R, Oliveira F., The immune response to sand fly salivary proteins, its influence on Leishmania immunity. Front Immunol 2012 ; 3 : 110. [CrossRef] [PubMed]
  57. Mbow ML, Bleyenberg JA, Hall LR, Titus RG. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 1998 ; 161 : 5571–5577. [PubMed]
  58. Marzouki S, Ben Ahmed M, Boussoffara T, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg 2011 ; 84 : 653–661. [CrossRef] [PubMed]
  59. Marzouki S, Abdeladhim M, Abdessalem CB, et al. Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans. PLoS Negl Trop Dis 2012 ; 6 : e1911. [CrossRef] [PubMed]
  60. Abdeladhim M, Jochim RC, Ben Ahmed M, et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain) : the search for sand fly-secreted immunogenic proteins for humans. PLoS One 2012 ; 7 : e47347. [CrossRef] [PubMed]
  61. Nicolle C. Sur trois cas d’infection splénique infantile à corps de Leishman observés en Tunisie. Arch Inst Pasteur Tunis 1908 ; 1 : 1–26.
  62. Nicolle C, Compte C. Origine canine du Kala-azar. Arch Inst Pasteur Tunis 1908 ; 1 : 109–112.
  63. Theodorides J. Historical note on the discovery of cutaneous leishmaniasis transmission by Phlebotomus. Bull Soc Pathol Exot 1997 ; 90 : 177–178. [PubMed]
  64. Cox FE. History of human parasitology. Clin Microbiol Rev 2002 ; 15 : 595–612. [CrossRef] [PubMed]
  65. Ul Bari U. Chronology of cutaneous leishmaniasis : an overview of the history of the disease. J Pakist Assoc Dermatol 2006 ; 16 : 24–27.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.