Free Access
Issue
Med Sci (Paris)
Volume 29, Number 12, Décembre 2013
Page(s) 1125 - 1130
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132912016
Published online 20 December 2013
  1. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007 ; 67 : 3043–3053. [CrossRef] [PubMed] [Google Scholar]
  2. Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell 2001 ; 8 : 317–325. [CrossRef] [PubMed] [Google Scholar]
  3. Velasco-Miguel S, Buckbinder L, Jean P, et al. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 1999 ; 18 : 127–137. [CrossRef] [PubMed] [Google Scholar]
  4. Budanov AV, Shoshani T, Faerman A, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 2002 ; 21 : 6017–6031. [CrossRef] [PubMed] [Google Scholar]
  5. Budanov AV, Karin M. p53 Target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008 ; 134 : 451–460. [CrossRef] [PubMed] [Google Scholar]
  6. Gottlieb TM, Leal JFM, Seger R, et al. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 2002 ; 21 : 1299–1303. [CrossRef] [PubMed] [Google Scholar]
  7. Schwartzenberg-Bar-Yoseph F. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004 ; 64 : 2627–2633. [CrossRef] [PubMed] [Google Scholar]
  8. Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol 2008 ; 10 : 611–618. [CrossRef] [PubMed] [Google Scholar]
  9. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006 ; 126 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  10. Matoba S. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed] [Google Scholar]
  11. Yoshida Y, Izumi H, Torigoe T, et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 2003 ; 63 : 3729–3734. [PubMed] [Google Scholar]
  12. Achanta G, Sasaki R, Feng L, et al. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 2005 ; 24 : 3482–3492. [CrossRef] [PubMed] [Google Scholar]
  13. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 1997 ; 272 : 22776–22780. [CrossRef] [PubMed] [Google Scholar]
  14. Ide T, Brown-Endres L, Chu K, et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 2009 ; 36 : 379–392. [CrossRef] [PubMed] [Google Scholar]
  15. Assaily W, Rubinger DA, Wheaton K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 2011 ; 44 : 491–501. [CrossRef] [PubMed] [Google Scholar]
  16. Goldstein I, Ezra O, Rivlin N, et al. p53, a novel regulator of lipid metabolism pathways. J Hepatol 2012 ; 56 : 656–662. [CrossRef] [PubMed] [Google Scholar]
  17. Yahagi N, Shimano H, Matsuzaka T, et al. p53 activation in adipocytes of obese mice. J Biol Chem 2003 ; 278 : 25395–25400. [CrossRef] [PubMed] [Google Scholar]
  18. Jiang P, Du W, Mancuso A, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013 ; 493 : 689–693. [CrossRef] [PubMed] [Google Scholar]
  19. Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010 ; 107 : 7455–7460. [CrossRef] [Google Scholar]
  20. Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010 ; 107 : 7461–7466. [CrossRef] [Google Scholar]
  21. Maddocks ODK, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013 ; 493 : 542–546. [CrossRef] [PubMed] [Google Scholar]
  22. Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005 ; 65 : 177–185. [PubMed] [Google Scholar]
  23. Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011 ; 13 : 310–316. [CrossRef] [PubMed] [Google Scholar]
  24. Sen N, Satija YK, Das S. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 2011 ; 44 : 621–634. [CrossRef] [PubMed] [Google Scholar]
  25. Armata HL, Golebiowski D, Jung DY, et al. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 2010 ; 30 : 5787–5794. [CrossRef] [PubMed] [Google Scholar]
  26. Franck D, Tracy L, Armata HL, et al. Glucose tolerance in mice is linked to the dose of the p53 transactivation domain. Endocr Res 2012 ; 38 : 139–150. [CrossRef] [PubMed] [Google Scholar]
  27. Maillet A, Pervaiz S. Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 2012 ; 16 : 1285–1294. [CrossRef] [PubMed] [Google Scholar]
  28. Lee SM, Kim JH, Cho EJ, et al. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 2009 ; 16 : 738–748. [CrossRef] [PubMed] [Google Scholar]
  29. Jiang D, Attardi LD. Engaging the p53 metabolic brake drives senescence. Cell Res 2013 ; 23 : 739–740. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang XH, Zhao C, Ma ZA. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR. J Cell Sci 2007 ; 120 : 4134–4143. [CrossRef] [PubMed] [Google Scholar]
  31. Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genomics 2009 ; 37 : 58–66. [CrossRef] [PubMed] [Google Scholar]
  32. Molchadsky A, Ezra O, Amendola PG, et al. p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ 2013 ; 20 : 744–783. [CrossRef] [PubMed] [Google Scholar]
  33. Molchadsky A, Shats I, Goldfinger N, et al. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. Preiss T, Ed. PloS One 2008 ; 3 : e3707. [CrossRef] [PubMed] [Google Scholar]
  34. Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 2009 ; 15 : 1082–1087. [CrossRef] [PubMed] [Google Scholar]
  35. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 ; 470 : 359–365. [CrossRef] [PubMed] [Google Scholar]
  36. Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med 2005 ; 11 : 1306–1313. [CrossRef] [PubMed] [Google Scholar]
  37. Li T, Kon N, Le Jiang, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012 ; 149 : 1269–1283. [CrossRef] [PubMed] [Google Scholar]
  38. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire. Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Floquet C, Rousset JP, Bidou L. La réactivation par translecture du gène p53 possédant une mutation non-sens induit l’apoptose de cellules cancéreuses. Med Sci (Paris) 2011 ; 27 : 585–586. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.