Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 12, Décembre 2013
Page(s) 1125 - 1130
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132912016
Publié en ligne 20 décembre 2013
  1. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007 ; 67 : 3043–3053. [CrossRef] [PubMed] [Google Scholar]
  2. Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell 2001 ; 8 : 317–325. [CrossRef] [PubMed] [Google Scholar]
  3. Velasco-Miguel S, Buckbinder L, Jean P, et al. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 1999 ; 18 : 127–137. [CrossRef] [PubMed] [Google Scholar]
  4. Budanov AV, Shoshani T, Faerman A, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 2002 ; 21 : 6017–6031. [CrossRef] [PubMed] [Google Scholar]
  5. Budanov AV, Karin M. p53 Target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008 ; 134 : 451–460. [CrossRef] [PubMed] [Google Scholar]
  6. Gottlieb TM, Leal JFM, Seger R, et al. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 2002 ; 21 : 1299–1303. [CrossRef] [PubMed] [Google Scholar]
  7. Schwartzenberg-Bar-Yoseph F. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004 ; 64 : 2627–2633. [CrossRef] [PubMed] [Google Scholar]
  8. Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol 2008 ; 10 : 611–618. [CrossRef] [PubMed] [Google Scholar]
  9. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006 ; 126 : 107–120. [CrossRef] [PubMed] [Google Scholar]
  10. Matoba S. p53 regulates mitochondrial respiration. Science 2006 ; 312 : 1650–1653. [CrossRef] [PubMed] [Google Scholar]
  11. Yoshida Y, Izumi H, Torigoe T, et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 2003 ; 63 : 3729–3734. [PubMed] [Google Scholar]
  12. Achanta G, Sasaki R, Feng L, et al. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 2005 ; 24 : 3482–3492. [CrossRef] [PubMed] [Google Scholar]
  13. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 1997 ; 272 : 22776–22780. [CrossRef] [PubMed] [Google Scholar]
  14. Ide T, Brown-Endres L, Chu K, et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 2009 ; 36 : 379–392. [CrossRef] [PubMed] [Google Scholar]
  15. Assaily W, Rubinger DA, Wheaton K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 2011 ; 44 : 491–501. [CrossRef] [PubMed] [Google Scholar]
  16. Goldstein I, Ezra O, Rivlin N, et al. p53, a novel regulator of lipid metabolism pathways. J Hepatol 2012 ; 56 : 656–662. [CrossRef] [PubMed] [Google Scholar]
  17. Yahagi N, Shimano H, Matsuzaka T, et al. p53 activation in adipocytes of obese mice. J Biol Chem 2003 ; 278 : 25395–25400. [CrossRef] [PubMed] [Google Scholar]
  18. Jiang P, Du W, Mancuso A, et al. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013 ; 493 : 689–693. [CrossRef] [PubMed] [Google Scholar]
  19. Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010 ; 107 : 7455–7460. [CrossRef] [Google Scholar]
  20. Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010 ; 107 : 7461–7466. [CrossRef] [Google Scholar]
  21. Maddocks ODK, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013 ; 493 : 542–546. [CrossRef] [PubMed] [Google Scholar]
  22. Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005 ; 65 : 177–185. [PubMed] [Google Scholar]
  23. Jiang P, Du W, Wang X, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011 ; 13 : 310–316. [CrossRef] [PubMed] [Google Scholar]
  24. Sen N, Satija YK, Das S. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 2011 ; 44 : 621–634. [CrossRef] [PubMed] [Google Scholar]
  25. Armata HL, Golebiowski D, Jung DY, et al. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 2010 ; 30 : 5787–5794. [CrossRef] [PubMed] [Google Scholar]
  26. Franck D, Tracy L, Armata HL, et al. Glucose tolerance in mice is linked to the dose of the p53 transactivation domain. Endocr Res 2012 ; 38 : 139–150. [CrossRef] [Google Scholar]
  27. Maillet A, Pervaiz S. Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 2012 ; 16 : 1285–1294. [CrossRef] [PubMed] [Google Scholar]
  28. Lee SM, Kim JH, Cho EJ, et al. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 2009 ; 16 : 738–748. [CrossRef] [PubMed] [Google Scholar]
  29. Jiang D, Attardi LD. Engaging the p53 metabolic brake drives senescence. Cell Res 2013 ; 23 : 739–740. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang XH, Zhao C, Ma ZA. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR. J Cell Sci 2007 ; 120 : 4134–4143. [CrossRef] [PubMed] [Google Scholar]
  31. Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genomics 2009 ; 37 : 58–66. [CrossRef] [PubMed] [Google Scholar]
  32. Molchadsky A, Ezra O, Amendola PG, et al. p53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death Differ 2013 ; 20 : 744–783. [CrossRef] [PubMed] [Google Scholar]
  33. Molchadsky A, Shats I, Goldfinger N, et al. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. Preiss T, Ed. PloS One 2008 ; 3 : e3707. [CrossRef] [PubMed] [Google Scholar]
  34. Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 2009 ; 15 : 1082–1087. [CrossRef] [PubMed] [Google Scholar]
  35. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011 ; 470 : 359–365. [CrossRef] [PubMed] [Google Scholar]
  36. Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med 2005 ; 11 : 1306–1313. [CrossRef] [PubMed] [Google Scholar]
  37. Li T, Kon N, Le Jiang, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012 ; 149 : 1269–1283. [CrossRef] [PubMed] [Google Scholar]
  38. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire. Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Bischof O, Dejean A, Pineau P. Une re-vue de la sénescence cellulaire. Med Sci (Paris) 2009 ; 25 : 153–160. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Floquet C, Rousset JP, Bidou L. La réactivation par translecture du gène p53 possédant une mutation non-sens induit l’apoptose de cellules cancéreuses. Med Sci (Paris) 2011 ; 27 : 585–586. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.