Free Access
Med Sci (Paris)
Volume 29, Number 11, Novembre 2013
Page(s) 991 - 997
Section M/S Revues
Published online 20 November 2013
  1. Hidalgo M. Pancreatic cancer. N Engl J Med 2010 ; 362 : 1605–1617. [CrossRef] [PubMed] [Google Scholar]
  2. [Google Scholar]
  3. Torrisani J, Buscail L. Molecular pathways of pancreatic carcinogenesis. Ann Pathol 2002 ; 22 : 349–355. [PubMed] [Google Scholar]
  4. Berthélemy P, Bouisson M, Escourrou J, et al. Identification of KRAS mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 1995 ; 123 : 188–191. [CrossRef] [PubMed] [Google Scholar]
  5. Laghi L, Orbetegli O, Bianchi P, et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene 2002 ; 21 : 4301–4306. [CrossRef] [PubMed] [Google Scholar]
  6. Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol 2000 ; 156 : 1821–1825. [CrossRef] [PubMed] [Google Scholar]
  7. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999 ; 400 : 464–468. [CrossRef] [PubMed] [Google Scholar]
  8. Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003 ; 4 : 437–450. [CrossRef] [PubMed] [Google Scholar]
  9. Siveke JT, Einwachter H, Sipos B, et al. Concomitant pancreatic activation of Kras(G12D) and Tgfα results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 2007 ; 12 : 266–279. [CrossRef] [PubMed] [Google Scholar]
  10. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003 ; 17 : 3112–3126. [CrossRef] [PubMed] [Google Scholar]
  11. Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006 ; 103 : 5947–5952. [CrossRef] [Google Scholar]
  12. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005 ; 7 : 469–483. [CrossRef] [PubMed] [Google Scholar]
  13. Kojima K, Vickers SM, Adsay NV, et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 2007 ; 67 : 8121–8130. [CrossRef] [PubMed] [Google Scholar]
  14. Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/DPC4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 2007 ; 11 : 229–243. [CrossRef] [PubMed] [Google Scholar]
  15. Skoulidis F, Cassidy LD, Pisupati V, et al. Germline BRCA2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 2010 ; 18 : 499–509. [CrossRef] [PubMed] [Google Scholar]
  16. Guerra C, Schuhmacher AJ, Canamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007 ; 11 : 291–302. [CrossRef] [PubMed] [Google Scholar]
  17. Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008 ; 5 : e123. [CrossRef] [PubMed] [Google Scholar]
  18. Fendrich V, Schneider R, Maitra A, et al. Detection of precursor lesions of pancreatic adenocarcinoma in PET-CT in a genetically engineered mouse model of pancreatic cancer. Neoplasia 2011 ; 13 : 180–186. [PubMed] [Google Scholar]
  19. Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009 ; 324 : 1457–1461. [CrossRef] [PubMed] [Google Scholar]
  20. Bournet B, Souque A, Senesse P, et al. EUS-guided fine needle-aspiration biopsy coupled to KRAS mutation assay to differentiate pancreatic cancer from pseudo-tumorous chronic pancreatitis. Endoscopy 2009 ; 41 : 552–557. [CrossRef] [PubMed] [Google Scholar]
  21. Van Laethem JL, Vertongen P, Deviere J, et al. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut 1995 ; 36 : 781–787. [CrossRef] [PubMed] [Google Scholar]
  22. Costentin L, Pagès P, Bouisson M, et al. Frequent deletions of tumor suppressor genes in pure pancreatic juice from patients with tumoral or nontumoral pancreatic diseases. Pancreatology 2002 ; 2 : 17–25. [CrossRef] [PubMed] [Google Scholar]
  23. Tada M, Komatsu Y, Kawabe T, et al. Quantitative analysis of K-ras gene mutation in pancreatic tissue obtained by endoscopic ultrasonography-guided fine needle aspiration : clinical utility for diagnosis of pancreatic tumor. Am J Gastroenterol 2002 ; 97 : 2263–2270. [CrossRef] [PubMed] [Google Scholar]
  24. Pellisé M, Castells A, Ginès A, et al. Clinical usefulness of KRAS mutational analysis in the diagnosis of pancreatic adenocarcinoma by means of endosonography-guided fine-needle aspiration biopsy. Aliment Pharmacol Ther 2003 ; 17 : 1299–1307. [CrossRef] [PubMed] [Google Scholar]
  25. Takahashi K, Yamao K, Okubo K, et al. Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest Endosc 2005 ; 61 : 76–79. [CrossRef] [PubMed] [Google Scholar]
  26. Maluf-Filho F, Kumar A, Gerhardt R, et al. Kras mutation analysis of fine needle aspirate under EUS guidance facilitates risk stratification of patients with pancreatic mass. J Clin Gastroenterol 2007 ; 41 : 906–910. [CrossRef] [PubMed] [Google Scholar]
  27. Bournet B, Muscari F, Guimbaud R, et al. KRAS mutations and their correlation with survival of patients with advanced pancreatic cancer. Pancreas 2013 ; 42 : 543–544. [CrossRef] [PubMed] [Google Scholar]
  28. Shin SH, Kim SC, Hong S-M, et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas 2013 ; 42 : 216–222. [CrossRef] [PubMed] [Google Scholar]
  29. Lièvre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006 ; 66 : 3992–3995. [CrossRef] [PubMed] [Google Scholar]
  30. Laurent-Puig P. Critères biologiques d’éligibilité pour un traitement anti-EGFR. Med Sci (Paris) 2009 ; 25 : 21–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Galmiche A, Ezzoukhry Z. Régulation de la survie cellulaire par les kinases de la famille RAF. Med Sci (Paris) 2010 ; 26 : 729–733. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Viret F, Gonçalves A. Cancers colorectaux métastatiques et thérapies ciblées anti-EGF. Med Sci (Paris) 2009 ; 25 : 13–21. [CrossRef] [EDP Sciences] [Google Scholar]
  33. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of Ras. Nat Rev Mol Cell Biol 2012 ; 13 : 39–51. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.