Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 11, Novembre 2013
Page(s) 991 - 997
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132911015
Publié en ligne 20 novembre 2013
  1. Hidalgo M. Pancreatic cancer. N Engl J Med 2010 ; 362 : 1605–1617. [CrossRef] [PubMed] [Google Scholar]
  2. http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/. [Google Scholar]
  3. Torrisani J, Buscail L. Molecular pathways of pancreatic carcinogenesis. Ann Pathol 2002 ; 22 : 349–355. [PubMed] [Google Scholar]
  4. Berthélemy P, Bouisson M, Escourrou J, et al. Identification of KRAS mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 1995 ; 123 : 188–191. [CrossRef] [PubMed] [Google Scholar]
  5. Laghi L, Orbetegli O, Bianchi P, et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene 2002 ; 21 : 4301–4306. [CrossRef] [PubMed] [Google Scholar]
  6. Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol 2000 ; 156 : 1821–1825. [CrossRef] [PubMed] [Google Scholar]
  7. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999 ; 400 : 464–468. [CrossRef] [PubMed] [Google Scholar]
  8. Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003 ; 4 : 437–450. [CrossRef] [PubMed] [Google Scholar]
  9. Siveke JT, Einwachter H, Sipos B, et al. Concomitant pancreatic activation of Kras(G12D) and Tgfα results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 2007 ; 12 : 266–279. [CrossRef] [PubMed] [Google Scholar]
  10. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003 ; 17 : 3112–3126. [CrossRef] [PubMed] [Google Scholar]
  11. Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006 ; 103 : 5947–5952. [CrossRef] [Google Scholar]
  12. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005 ; 7 : 469–483. [CrossRef] [PubMed] [Google Scholar]
  13. Kojima K, Vickers SM, Adsay NV, et al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 2007 ; 67 : 8121–8130. [CrossRef] [PubMed] [Google Scholar]
  14. Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/DPC4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 2007 ; 11 : 229–243. [CrossRef] [PubMed] [Google Scholar]
  15. Skoulidis F, Cassidy LD, Pisupati V, et al. Germline BRCA2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell 2010 ; 18 : 499–509. [CrossRef] [PubMed] [Google Scholar]
  16. Guerra C, Schuhmacher AJ, Canamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007 ; 11 : 291–302. [CrossRef] [PubMed] [Google Scholar]
  17. Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 2008 ; 5 : e123. [CrossRef] [PubMed] [Google Scholar]
  18. Fendrich V, Schneider R, Maitra A, et al. Detection of precursor lesions of pancreatic adenocarcinoma in PET-CT in a genetically engineered mouse model of pancreatic cancer. Neoplasia 2011 ; 13 : 180–186. [PubMed] [Google Scholar]
  19. Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009 ; 324 : 1457–1461. [CrossRef] [PubMed] [Google Scholar]
  20. Bournet B, Souque A, Senesse P, et al. EUS-guided fine needle-aspiration biopsy coupled to KRAS mutation assay to differentiate pancreatic cancer from pseudo-tumorous chronic pancreatitis. Endoscopy 2009 ; 41 : 552–557. [CrossRef] [PubMed] [Google Scholar]
  21. Van Laethem JL, Vertongen P, Deviere J, et al. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut 1995 ; 36 : 781–787. [CrossRef] [PubMed] [Google Scholar]
  22. Costentin L, Pagès P, Bouisson M, et al. Frequent deletions of tumor suppressor genes in pure pancreatic juice from patients with tumoral or nontumoral pancreatic diseases. Pancreatology 2002 ; 2 : 17–25. [CrossRef] [PubMed] [Google Scholar]
  23. Tada M, Komatsu Y, Kawabe T, et al. Quantitative analysis of K-ras gene mutation in pancreatic tissue obtained by endoscopic ultrasonography-guided fine needle aspiration : clinical utility for diagnosis of pancreatic tumor. Am J Gastroenterol 2002 ; 97 : 2263–2270. [CrossRef] [PubMed] [Google Scholar]
  24. Pellisé M, Castells A, Ginès A, et al. Clinical usefulness of KRAS mutational analysis in the diagnosis of pancreatic adenocarcinoma by means of endosonography-guided fine-needle aspiration biopsy. Aliment Pharmacol Ther 2003 ; 17 : 1299–1307. [CrossRef] [PubMed] [Google Scholar]
  25. Takahashi K, Yamao K, Okubo K, et al. Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest Endosc 2005 ; 61 : 76–79. [CrossRef] [PubMed] [Google Scholar]
  26. Maluf-Filho F, Kumar A, Gerhardt R, et al. Kras mutation analysis of fine needle aspirate under EUS guidance facilitates risk stratification of patients with pancreatic mass. J Clin Gastroenterol 2007 ; 41 : 906–910. [CrossRef] [PubMed] [Google Scholar]
  27. Bournet B, Muscari F, Guimbaud R, et al. KRAS mutations and their correlation with survival of patients with advanced pancreatic cancer. Pancreas 2013 ; 42 : 543–544. [CrossRef] [PubMed] [Google Scholar]
  28. Shin SH, Kim SC, Hong S-M, et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas 2013 ; 42 : 216–222. [CrossRef] [PubMed] [Google Scholar]
  29. Lièvre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006 ; 66 : 3992–3995. [CrossRef] [PubMed] [Google Scholar]
  30. Laurent-Puig P. Critères biologiques d’éligibilité pour un traitement anti-EGFR. Med Sci (Paris) 2009 ; 25 : 21–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Galmiche A, Ezzoukhry Z. Régulation de la survie cellulaire par les kinases de la famille RAF. Med Sci (Paris) 2010 ; 26 : 729–733. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Viret F, Gonçalves A. Cancers colorectaux métastatiques et thérapies ciblées anti-EGF. Med Sci (Paris) 2009 ; 25 : 13–21. [CrossRef] [EDP Sciences] [Google Scholar]
  33. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of Ras. Nat Rev Mol Cell Biol 2012 ; 13 : 39–51. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.