Free Access
Med Sci (Paris)
Volume 29, Number 11, Novembre 2013
Page(s) 1010 - 1017
Section M/S Revues
Published online 20 November 2013
  1. Bartel DP. MicroRNAs : target recognition and regulatory functions. Cell 2009 ; 136 : 215–233. [CrossRef] [PubMed] [Google Scholar]
  2. Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 2011 ; 43 : 892–903. [CrossRef] [PubMed] [Google Scholar]
  3. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nature Rev 2008 ; 9 : 219–230. [CrossRef] [PubMed] [Google Scholar]
  4. Wheeler BM, Heimberg AM, Moy VN, et al. The deep evolution of metazoan microRNAs. Evol Dev 2009 ; 11 : 50–68. [CrossRef] [PubMed] [Google Scholar]
  5. Lai EC, Wiel C, Rubin GM. Complementary miRNA pairs suggest a regulatory role for miRNA : miRNA duplexes. RNA 2004 ; 10 : 171–175. [CrossRef] [PubMed] [Google Scholar]
  6. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003 ; 17 : 991–1008. [CrossRef] [PubMed] [Google Scholar]
  7. Rajasethupathy P, Fiumara F, Sheridan R, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 2009 ; 63 : 803–817. [CrossRef] [PubMed] [Google Scholar]
  8. Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011 ; 12 : 846–860. [CrossRef] [PubMed] [Google Scholar]
  9. Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004 ; 5 : R68. [CrossRef] [PubMed] [Google Scholar]
  10. Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine, human neuronal differentiation. Genome Biol 2004 ; 5 : R13. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science 2005 ; 309 : 310–311. [CrossRef] [PubMed] [Google Scholar]
  12. Candiani S, Moronti L, De Pietri Tonelli D, et al. A study of neural-related microRNAs in the developing amphioxus. Evodevo 2011 ; 2 : 15. [CrossRef] [PubMed] [Google Scholar]
  13. Christodoulou F, Raible F, Tomer R, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature 2010 ; 463 : 1084–1088. [CrossRef] [PubMed] [Google Scholar]
  14. Bejarano F, Smibert P, Lai EC. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev Biol 2010 ; 338 : 63–73. [CrossRef] [PubMed] [Google Scholar]
  15. Biryukova I, Asmar J, Abdesselem H, Heitzler P. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Dev Biol 2009 ; 327 : 487–496. [CrossRef] [PubMed] [Google Scholar]
  16. Li Y, Wang F, Lee JA, Gao FB. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 2006 ; 20 : 2793–2805. [CrossRef] [PubMed] [Google Scholar]
  17. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007 ; 8 : 93–103. [CrossRef] [PubMed] [Google Scholar]
  18. Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 2011 ; 20 : 19–32. [CrossRef] [PubMed] [Google Scholar]
  19. Coolen M, Thieffry D, Drivenes Ø, et al. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. Dev Cell 2012 ; 22 : 1052–1064. [CrossRef] [PubMed] [Google Scholar]
  20. Leucht C, Stigloher C, Wizenmann A, et al. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 2008 ; 11 : 641–648. [CrossRef] [PubMed] [Google Scholar]
  21. Shibata M, Kurokawa D, Nakao H, et al. MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 2008 ; 28 : 10415–10421. [CrossRef] [PubMed] [Google Scholar]
  22. Coolen M, Bally-Cuif L. Microrégulation aux frontières (cérébrales). Med Sci (Paris) 2008 ; 24 : 787–789. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Shibata M, Nakao H, Kiyonari H, et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 2011 ; 31 : 3407–3422. [CrossRef] [PubMed] [Google Scholar]
  24. Laneve P, Gioia U, Andriotto A, et al. A minicircuitry involving REST and CREB controls miR-9–2 expression during human neuronal differentiation. Nucleic Acids Res 2010 ; 38 : 6895–6905. [CrossRef] [PubMed] [Google Scholar]
  25. Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009 ; 16 : 365–371. [CrossRef] [PubMed] [Google Scholar]
  26. Bonev B, Stanley P, Papalopulu N. MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2012 ; 2 : 10–18. [CrossRef] [PubMed] [Google Scholar]
  27. Kageyama R, Niwa Y, Shimojo H, et al. Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr Top Dev Biol 2010 ; 92 : 311–331. [CrossRef] [PubMed] [Google Scholar]
  28. Deo M, Yu JY, Chung KH, et al. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 2006 ; 235 : 2538–2548. [CrossRef] [PubMed] [Google Scholar]
  29. Kapsimali M, Kloosterman WP, De Bruijn E, et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007 ; 8 : R173. [CrossRef] [PubMed] [Google Scholar]
  30. Delaloy C, Liu L, Lee JA, et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell stem cell 2010 ; 6 : 323–335. [CrossRef] [PubMed] [Google Scholar]
  31. Gao FB. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 2010 ; 5 : 25. [CrossRef] [PubMed] [Google Scholar]
  32. Ferretti E, De Smaele E, Po A, et al. MicroRNA profiling in human medulloblastoma. Int J Cancer 2009 ; 124 : 568–577. [CrossRef] [PubMed] [Google Scholar]
  33. Kim TM, Huang W, Park R, et al. A developmental taxonomy of glioblastoma defined and maintained by microRNAs. Cancer Res 2011 ; 71 : 3387–3399. [CrossRef] [PubMed] [Google Scholar]
  34. Schraivogel D, Weinmann L, Beier D, et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J 2011 ; 30 : 4309–4322. [CrossRef] [PubMed] [Google Scholar]
  35. Jeon HM, Sohn YW, Oh SY, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 2011 ; 71 : 3410–3421. [CrossRef] [PubMed] [Google Scholar]
  36. Huang Z, Cheng L, Guryanova OA, et al. Cancer stem cells in glioblastoma - molecular signaling and therapeutic targeting. Protein Cell 2010 ; 1 : 638–655. [CrossRef] [PubMed] [Google Scholar]
  37. Leucci E, Zriwil A, Gregersen LH, et al. Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo. Oncogene 2012 ; 31 : 5081–5089. [CrossRef] [PubMed] [Google Scholar]
  38. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010 ; 12 : 247–256. [PubMed] [Google Scholar]
  39. Wilting SM, Snijders PJF, Verlaat W, et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013 ; 32 : 106–116. [CrossRef] [PubMed] [Google Scholar]
  40. Lu MH, Huang CC, Pan MR, et al. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 2012 ; 18 : 6416–6425. [CrossRef] [PubMed] [Google Scholar]
  41. Rotkrua P, Akiyama Y, Hashimoto Y, et al. MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer 2011 ; 129 : 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  42. Senyuk V, Zhang Y, Liu Y, et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci USA 2013 ; 110 : 5594–5599. [CrossRef] [Google Scholar]
  43. Heller G, Weinzierl M, Noll C, et al. Genome-wide miRNA expression profiling identifies miR-9–3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res 2012 ; 18 : 1619–1629. [CrossRef] [PubMed] [Google Scholar]
  44. Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009 ; 125 : 2737–2743. [CrossRef] [PubMed] [Google Scholar]
  45. Guo LM, Pu Y, Han Z, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 2009 ; 276 : 5537–5546. [CrossRef] [PubMed] [Google Scholar]
  46. Ebert MS, Sharp PA. MicroRNA sponges : progress and possibilities. RNA 2011 ; 16 : 2043–2050. [CrossRef] [Google Scholar]
  47. Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 2007 ; 318 : 271–274. [CrossRef] [PubMed] [Google Scholar]
  48. Blondel S, Navarro C, Lévy N, et al. MiR-9 : la sentinelle des neurones dans la progéria. Med Sci (Paris) 2012 ; 28 : 663–666. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.