Free Access
Issue
Med Sci (Paris)
Volume 29, Number 10, Octobre 2013
Page(s) 890 - 896
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132910017
Published online 18 October 2013
  1. Benmerah A, Lamaze C. Endocytose : chaque voie compte ! Med Sci (Paris) 2002 ; 18 : 1126–1136. [CrossRef] [EDP Sciences] [Google Scholar]
  2. Boucrot E, McMahon HT. Initiation de l’endocytose par vésicules de clathrine : des « sculpteurs de membrane » au travail. Med Sci (Paris) 2011 ; 27 : 122–125. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Lamaze C, Schmid SL. The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995 ; 7 : 573–580. [CrossRef] [PubMed] [Google Scholar]
  4. Lamaze C, Dujeancourt A, Baba T, et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001 ; 7 : 661–671. [CrossRef] [PubMed] [Google Scholar]
  5. Nichols BJ, Kenworthy AK, Polishchuk RS, et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 2001 ; 153 : 529–541. [CrossRef] [PubMed] [Google Scholar]
  6. Torgersen ML, Skretting G, van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 2001 ; 114 : 3737–3747. [PubMed] [Google Scholar]
  7. Palade GE., The fine structure of blood capillaries. J Appl Physiol 1953 ; 24 : 1424. [Google Scholar]
  8. Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998 ; 141 : 85–99. [CrossRef] [PubMed] [Google Scholar]
  9. Oh P, McIntosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998 ; 141 : 101–114. [CrossRef] [PubMed] [Google Scholar]
  10. Goetz JG, Del Pozo MA. La cavéoline-1 force le remodelage de la matrice extracellulaire. Med Sci (Paris) 2011 ; 27 : 940–944. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007 ; 8 : 185–194. [CrossRef] [PubMed] [Google Scholar]
  12. Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 2012 ; 23 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  13. Ortegren U, Karlsson M, Blazic N, et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur J Biochem 2004 ; 271 : 2028–2036. [CrossRef] [PubMed] [Google Scholar]
  14. Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010 ; 20 : 177–186. [CrossRef] [PubMed] [Google Scholar]
  15. Parton RG, Del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013 ; 14 : 98–112. [CrossRef] [PubMed] [Google Scholar]
  16. Echarri A, Del Pozo MA. Caveolae. Curr Biol 2012 ; 22 : R114–R116. [CrossRef] [PubMed] [Google Scholar]
  17. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001 ; 3 : 473–483. [CrossRef] [PubMed] [Google Scholar]
  18. Damm EM, Pelkmans L, Kartenbeck J, et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 2005 ; 168 : 477–488. [CrossRef] [PubMed] [Google Scholar]
  19. Hayer A, Stoeber M, Ritz D, et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010 ; 191 : 615–629. [CrossRef] [PubMed] [Google Scholar]
  20. Ewers H, Romer W, Smith AE, et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 2010 ; 12 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  21. Sharma DK, Brown JC, Choudhury A, et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004 ; 15 : 3114–3122. [CrossRef] [PubMed] [Google Scholar]
  22. Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2002 ; 277 : 3371–3379. [CrossRef] [PubMed] [Google Scholar]
  23. Le PU, Nabi IR. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 2003 ; 116 : 1059–1071. [CrossRef] [PubMed] [Google Scholar]
  24. Singh RD, Puri V, Valiyaveettil JT, et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 2003 ; 14 : 3254–3265. [CrossRef] [PubMed] [Google Scholar]
  25. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986 ; 102 : 1304–1311. [CrossRef] [PubMed] [Google Scholar]
  26. Oh P, Borgstrom P, Witkiewicz H, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 2007 ; 25 : 327–337. [CrossRef] [PubMed] [Google Scholar]
  27. Sinha B, Koster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011 ; 144 : 402–413. [CrossRef] [PubMed] [Google Scholar]
  28. Nassoy P, Lamaze C. Stressing caveolae new role in cell mechanics. Trends Cell Biol 2012 ; 22 : 381–389. [CrossRef] [PubMed] [Google Scholar]
  29. Grassart A, Dujeancourt A, Lazarow PB, et al. Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep 2008 ; 9 : 356–362. [CrossRef] [PubMed] [Google Scholar]
  30. Grassart A, Meas-Yedid V, Dufour A, et al. Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolin-independent endocytosis. Traffic 2010 ; 11 : 1079–1091. [CrossRef] [PubMed] [Google Scholar]
  31. Sauvonnet N, Dujeancourt A, Dautry-Varsat A. Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 2005 ; 168 : 155–163. [CrossRef] [PubMed] [Google Scholar]
  32. Gibert M, Monier MN, Ruez R, et al. Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 2011 ; 13 : 154–170. [CrossRef] [PubMed] [Google Scholar]
  33. Damke H, Baba T, van der Bliek AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 1995 ; 131 : 69–80. [CrossRef] [PubMed] [Google Scholar]
  34. Sharma P, Varma R, Sarasij RC, et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 2004 ; 116 : 577–589. [CrossRef] [PubMed] [Google Scholar]
  35. Dubois T, Chavrier P. Une nouvelle protéine RhoGAP impliquée dans la régulation du complexe Arp2/3 au niveau de l’appareil de Golgi : un relais entre les protéines G ARF1 et Cdc42. Med Sci (Paris) 2005 ; 21 : 692–694. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002 ; 2 : 411–423. [CrossRef] [PubMed] [Google Scholar]
  37. Kumari S, Mayor S. ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 2008 ; 10 : 30–41. [CrossRef] [PubMed] [Google Scholar]
  38. Lundmark R, Doherty GJ, Howes MT, et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 2008 ; 18 : 1802–1808. [CrossRef] [PubMed] [Google Scholar]
  39. Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 2006 ; 8 : 46–54. [CrossRef] [PubMed] [Google Scholar]
  40. Frick M, Bright NA, Riento K, et al. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 2007 ; 17 : 1151–1156. [CrossRef] [PubMed] [Google Scholar]
  41. Radhakrishna H, Donaldson JG. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol 1997 ; 139 : 49–61. [CrossRef] [PubMed] [Google Scholar]
  42. Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 2004 ; 15 : 3542–3552. [CrossRef] [PubMed] [Google Scholar]
  43. Arnaoutova I, Jackson CL, Al-Awar OS, et al. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 2003 ; 14 : 4448–4457. [CrossRef] [PubMed] [Google Scholar]
  44. Brown FD, Rozelle AL, Yin HL, et al. Phosphatidylinositol 4, 5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 2001 ; 154 : 1007–1017. [CrossRef] [PubMed] [Google Scholar]
  45. Palacios F, Price L, Schweitzer J, et al. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 2001 ; 20 : 4973–4986. [CrossRef] [PubMed] [Google Scholar]
  46. Johannes L, Mayor S. Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 2010 ; 142 : 507–510. [CrossRef] [PubMed] [Google Scholar]
  47. Romer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007 ; 450 : 670–675. [CrossRef] [PubMed] [Google Scholar]
  48. Goswami D, Gowrishankar K, Bilgrami S, et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 2008 ; 135 : 1085–1097. [CrossRef] [PubMed] [Google Scholar]
  49. Suzuki KG, Kasai RS, Hirosawa KM, et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 2012 ; 8 : 774–783. [CrossRef] [PubMed] [Google Scholar]
  50. Sarasij RC, Mayor S, Rao M. Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae? Biophys J 2007 ; 92 : 3140–3158. [CrossRef] [PubMed] [Google Scholar]
  51. Liu J, Sun Y, Drubin DG, Oster GF. The mechanochemistry of endocytosis. PLoS Biol 2009 ; 7 : e1000204. [CrossRef] [PubMed] [Google Scholar]
  52. Roux A, Cuvelier D, Nassoy P, et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 2005 ; 24 : 1537–1545. [CrossRef] [PubMed] [Google Scholar]
  53. Romer W, Pontani LL, Sorre B, et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 2010 ; 140 : 540–553. [CrossRef] [PubMed] [Google Scholar]
  54. Gonnord P, Blouin CM, Lamaze C. Membrane trafficking and signaling: two sides of the same coin. Semin Cell Dev Biol 2011 ; 23 : 154–164. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.