Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 10, Octobre 2013
Page(s) 890 - 896
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20132910017
Publié en ligne 18 octobre 2013
  1. Benmerah A, Lamaze C. Endocytose : chaque voie compte ! Med Sci (Paris) 2002 ; 18 : 1126–1136. [CrossRef] [EDP Sciences] [Google Scholar]
  2. Boucrot E, McMahon HT. Initiation de l’endocytose par vésicules de clathrine : des « sculpteurs de membrane » au travail. Med Sci (Paris) 2011 ; 27 : 122–125. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Lamaze C, Schmid SL. The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995 ; 7 : 573–580. [CrossRef] [PubMed] [Google Scholar]
  4. Lamaze C, Dujeancourt A, Baba T, et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001 ; 7 : 661–671. [CrossRef] [PubMed] [Google Scholar]
  5. Nichols BJ, Kenworthy AK, Polishchuk RS, et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 2001 ; 153 : 529–541. [CrossRef] [PubMed] [Google Scholar]
  6. Torgersen ML, Skretting G, van Deurs B, Sandvig K. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 2001 ; 114 : 3737–3747. [PubMed] [Google Scholar]
  7. Palade GE., The fine structure of blood capillaries. J Appl Physiol 1953 ; 24 : 1424. [Google Scholar]
  8. Henley JR, Krueger EW, Oswald BJ, McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998 ; 141 : 85–99. [CrossRef] [PubMed] [Google Scholar]
  9. Oh P, McIntosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998 ; 141 : 101–114. [CrossRef] [PubMed] [Google Scholar]
  10. Goetz JG, Del Pozo MA. La cavéoline-1 force le remodelage de la matrice extracellulaire. Med Sci (Paris) 2011 ; 27 : 940–944. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007 ; 8 : 185–194. [CrossRef] [PubMed] [Google Scholar]
  12. Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 2012 ; 23 : 11–20. [CrossRef] [PubMed] [Google Scholar]
  13. Ortegren U, Karlsson M, Blazic N, et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur J Biochem 2004 ; 271 : 2028–2036. [CrossRef] [PubMed] [Google Scholar]
  14. Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010 ; 20 : 177–186. [CrossRef] [PubMed] [Google Scholar]
  15. Parton RG, Del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013 ; 14 : 98–112. [CrossRef] [PubMed] [Google Scholar]
  16. Echarri A, Del Pozo MA. Caveolae. Curr Biol 2012 ; 22 : R114–R116. [CrossRef] [PubMed] [Google Scholar]
  17. Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001 ; 3 : 473–483. [CrossRef] [PubMed] [Google Scholar]
  18. Damm EM, Pelkmans L, Kartenbeck J, et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 2005 ; 168 : 477–488. [CrossRef] [PubMed] [Google Scholar]
  19. Hayer A, Stoeber M, Ritz D, et al. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010 ; 191 : 615–629. [CrossRef] [PubMed] [Google Scholar]
  20. Ewers H, Romer W, Smith AE, et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 2010 ; 12 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  21. Sharma DK, Brown JC, Choudhury A, et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004 ; 15 : 3114–3122. [CrossRef] [PubMed] [Google Scholar]
  22. Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2002 ; 277 : 3371–3379. [CrossRef] [PubMed] [Google Scholar]
  23. Le PU, Nabi IR. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 2003 ; 116 : 1059–1071. [CrossRef] [PubMed] [Google Scholar]
  24. Singh RD, Puri V, Valiyaveettil JT, et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 2003 ; 14 : 3254–3265. [CrossRef] [PubMed] [Google Scholar]
  25. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986 ; 102 : 1304–1311. [CrossRef] [PubMed] [Google Scholar]
  26. Oh P, Borgstrom P, Witkiewicz H, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 2007 ; 25 : 327–337. [CrossRef] [PubMed] [Google Scholar]
  27. Sinha B, Koster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011 ; 144 : 402–413. [CrossRef] [PubMed] [Google Scholar]
  28. Nassoy P, Lamaze C. Stressing caveolae new role in cell mechanics. Trends Cell Biol 2012 ; 22 : 381–389. [CrossRef] [PubMed] [Google Scholar]
  29. Grassart A, Dujeancourt A, Lazarow PB, et al. Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep 2008 ; 9 : 356–362. [CrossRef] [PubMed] [Google Scholar]
  30. Grassart A, Meas-Yedid V, Dufour A, et al. Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolin-independent endocytosis. Traffic 2010 ; 11 : 1079–1091. [CrossRef] [PubMed] [Google Scholar]
  31. Sauvonnet N, Dujeancourt A, Dautry-Varsat A. Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 2005 ; 168 : 155–163. [CrossRef] [PubMed] [Google Scholar]
  32. Gibert M, Monier MN, Ruez R, et al. Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 2011 ; 13 : 154–170. [CrossRef] [PubMed] [Google Scholar]
  33. Damke H, Baba T, van der Bliek AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 1995 ; 131 : 69–80. [CrossRef] [PubMed] [Google Scholar]
  34. Sharma P, Varma R, Sarasij RC, et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 2004 ; 116 : 577–589. [CrossRef] [PubMed] [Google Scholar]
  35. Dubois T, Chavrier P. Une nouvelle protéine RhoGAP impliquée dans la régulation du complexe Arp2/3 au niveau de l’appareil de Golgi : un relais entre les protéines G ARF1 et Cdc42. Med Sci (Paris) 2005 ; 21 : 692–694. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002 ; 2 : 411–423. [CrossRef] [PubMed] [Google Scholar]
  37. Kumari S, Mayor S. ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 2008 ; 10 : 30–41. [CrossRef] [PubMed] [Google Scholar]
  38. Lundmark R, Doherty GJ, Howes MT, et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 2008 ; 18 : 1802–1808. [CrossRef] [PubMed] [Google Scholar]
  39. Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 2006 ; 8 : 46–54. [CrossRef] [PubMed] [Google Scholar]
  40. Frick M, Bright NA, Riento K, et al. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 2007 ; 17 : 1151–1156. [CrossRef] [PubMed] [Google Scholar]
  41. Radhakrishna H, Donaldson JG. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol 1997 ; 139 : 49–61. [CrossRef] [PubMed] [Google Scholar]
  42. Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 2004 ; 15 : 3542–3552. [CrossRef] [PubMed] [Google Scholar]
  43. Arnaoutova I, Jackson CL, Al-Awar OS, et al. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 2003 ; 14 : 4448–4457. [CrossRef] [PubMed] [Google Scholar]
  44. Brown FD, Rozelle AL, Yin HL, et al. Phosphatidylinositol 4, 5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 2001 ; 154 : 1007–1017. [CrossRef] [PubMed] [Google Scholar]
  45. Palacios F, Price L, Schweitzer J, et al. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 2001 ; 20 : 4973–4986. [CrossRef] [PubMed] [Google Scholar]
  46. Johannes L, Mayor S. Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 2010 ; 142 : 507–510. [CrossRef] [PubMed] [Google Scholar]
  47. Romer W, Berland L, Chambon V, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007 ; 450 : 670–675. [CrossRef] [PubMed] [Google Scholar]
  48. Goswami D, Gowrishankar K, Bilgrami S, et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 2008 ; 135 : 1085–1097. [CrossRef] [PubMed] [Google Scholar]
  49. Suzuki KG, Kasai RS, Hirosawa KM, et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 2012 ; 8 : 774–783. [CrossRef] [PubMed] [Google Scholar]
  50. Sarasij RC, Mayor S, Rao M. Chirality-induced budding: a raft-mediated mechanism for endocytosis and morphology of caveolae? Biophys J 2007 ; 92 : 3140–3158. [CrossRef] [PubMed] [Google Scholar]
  51. Liu J, Sun Y, Drubin DG, Oster GF. The mechanochemistry of endocytosis. PLoS Biol 2009 ; 7 : e1000204. [CrossRef] [PubMed] [Google Scholar]
  52. Roux A, Cuvelier D, Nassoy P, et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 2005 ; 24 : 1537–1545. [CrossRef] [PubMed] [Google Scholar]
  53. Romer W, Pontani LL, Sorre B, et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 2010 ; 140 : 540–553. [CrossRef] [PubMed] [Google Scholar]
  54. Gonnord P, Blouin CM, Lamaze C. Membrane trafficking and signaling: two sides of the same coin. Semin Cell Dev Biol 2011 ; 23 : 154–164. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.