Free Access
Issue
Med Sci (Paris)
Volume 29, Number 5, Mai 2013
Page(s) 515 - 522
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013295015
Published online 28 May 2013
  1. Frénal K, Soldati-Favre D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host Microbe 2009 ; 5 : 602–611. [CrossRef] [PubMed] [Google Scholar]
  2. Opitz C, Soldati D. “The glideosome”: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 2002 ; 45 : 597–604. [CrossRef] [PubMed] [Google Scholar]
  3. Carruthers V, Boothroyd JC. Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 2007 ; 10 : 83–89. [CrossRef] [PubMed] [Google Scholar]
  4. Mordue DG, Sibley LD. Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J Immunol 1997 ; 159 : 4452–4459. [PubMed] [Google Scholar]
  5. Biot C, Botte CY, Dubar F, Marechal E. Paludisme–Recherche de nouvelles approches thérapeutiques ciblant l’apicoplaste, un organite cellulaire d’origine algale. Med Sci (Paris) 2012 ; 28 : 163–171. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Baunaure F, Langsley G. Trafic protéique dans le globule rouge infecté par Plasmodium. Med Sci (Paris) 2005 ; 21 : 523–529. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Morrissette NS, Murray JM, Roos DS. Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 1997 ; 110 : 35–42. [PubMed] [Google Scholar]
  8. King CA. Cell motility of sporozoan protozoa. Parasitol Today 1988 ; 4 : 315–319. [CrossRef] [PubMed] [Google Scholar]
  9. Vanderberg JP. Studies on the motility of Plasmodium sporozoites. J Protozool 1974 ; 21 : 527–537. [PubMed] [Google Scholar]
  10. Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 2002 ; 66 : 21–38. [CrossRef] [PubMed] [Google Scholar]
  11. Sahoo N, Beatty W, Heuser J, et al. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 2006 ; 17 : 895–906. [CrossRef] [PubMed] [Google Scholar]
  12. Schmitz S, Grainger M, Howell S, et al. Malaria parasite actin filaments are very short. J Mol Biol 2005 ; 349 : 113–125. [CrossRef] [PubMed] [Google Scholar]
  13. Skillman KM, Diraviyam K, Khan A, et al. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 2011 ; 7 : e1002280. [CrossRef] [PubMed] [Google Scholar]
  14. Wetzel DM, Hakansson S, Hu K, et al. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 2003 ; 14 : 396–406. [CrossRef] [PubMed] [Google Scholar]
  15. Gordon JL, Sibley LD. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 2005 ; 6 : 179. [CrossRef] [PubMed] [Google Scholar]
  16. Daher W, Plattner F, Carlier MF, Soldati-Favre D. Concerted action of two formins in gliding motility, host cell invasion by Toxoplasma gondii. PLoS Pathog 2010 ; 6 : e1001132. [CrossRef] [PubMed] [Google Scholar]
  17. Skillman KM, Daher W, Ma CI, et al. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro. Biochemistry 2012 ; 51 : 2486–2495. [CrossRef] [PubMed] [Google Scholar]
  18. Mehta S, Sibley LD. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 2010 ; 285 : 6835–6847. [CrossRef] [PubMed] [Google Scholar]
  19. Mehta S, Sibley LD. Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. Mol Biol Cell 2011 ; 22 : 1290–1299. [CrossRef] [PubMed] [Google Scholar]
  20. Plattner F, Yarovinsky F, Romero S, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 2008 ; 3 : 77–87. [Google Scholar]
  21. Baum J, Tonkin CJ, Paul AS, et al. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. Cell Host Microbe 2008 ; 3 : 188–198. [CrossRef] [PubMed] [Google Scholar]
  22. Friedrich N, Matthews S, Soldati-Favre D. Sialic acids: key determinants for invasion by the Apicomplexa. Int J Parasitol 2010 ; 40 : 1145–1154. [CrossRef] [PubMed] [Google Scholar]
  23. Frénal K, Polonais V, Marq JB, et al. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 2010 ; 8 : 343–357. [CrossRef] [PubMed] [Google Scholar]
  24. Gaskins E, Gilk S, DeVore N, et al. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 2004 ; 165 : 383–393. [CrossRef] [PubMed] [Google Scholar]
  25. Buscaglia CA, Coppens I, Hol WG, Nussenzweig V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol Biol Cell 2003 ; 14 : 4947–4957. [CrossRef] [PubMed] [Google Scholar]
  26. Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 2003 ; 11 : 885–894. [CrossRef] [PubMed] [Google Scholar]
  27. Starnes GL, Jewett TJ, Carruthers VB, Sibley LD. Two separate, conserved acidic amino acid domains within the Toxoplasma gondii MIC2 cytoplasmic tail are required for parasite survival. J Biol Chem 2006 ; 281 : 30745–30754. [CrossRef] [PubMed] [Google Scholar]
  28. Buguliskis JS, Brossier F, Shuman J, Sibley LD. Rhomboid 4 (ROM4) affects the processing of surface adhesins, facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog 2010 ; 6 : e1000858. [Google Scholar]
  29. Ejigiri I, Ragheb DR, Pino P, et al. Shedding of TRAP by a rhomboid protease from the malaria sporozoite surface is essential for gliding motility, sporozoite infectivity. PLoS Pathog 2012 ; 8 : e1002725. [CrossRef] [PubMed] [Google Scholar]
  30. Herm-Gotz A, Weiss S, Stratmann R, et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 2002 ; 21 : 2149–2158. [CrossRef] [PubMed] [Google Scholar]
  31. Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 2002 ; 298 : 837–840. [CrossRef] [PubMed] [Google Scholar]
  32. Nebl T, Prieto JH, Kapp E, et al. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites, identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 2011 ; 7 : e1002222. [CrossRef] [PubMed] [Google Scholar]
  33. Gilk SD, Gaskins E, Ward GE, Beckers CJ. GAP45 phosphorylation controls assemblyof the Toxoplasma myosin XIV complex. Eukaryot Cell 2009 ; 8 : 190–196. [CrossRef] [PubMed] [Google Scholar]
  34. Jones ML, Cottingham C, Rayner JC. Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). Mol Biochem Parasitol 2009 ; 168 : 55–62. [CrossRef] [PubMed] [Google Scholar]
  35. Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978 ; 77 : 72–82. [Google Scholar]
  36. Alexander DL, Mital J, Ward GE, et al. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005 ; 1 : e17. [Google Scholar]
  37. Lebrun M, Michelin A, El Hajj H, et al. The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 2005 ; 7 : 1823–1833. [CrossRef] [PubMed] [Google Scholar]
  38. Riglar DT, Richard D, Wilson DW, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011 ; 9 : 9–20. [CrossRef] [PubMed] [Google Scholar]
  39. Besteiro S, Michelin A, Poncet J, et al. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009 ; 5 : e1000309. [Google Scholar]
  40. Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005 ; 16 : 4341–4349. [Google Scholar]
  41. Giovannini D, Spath S, Lacroix C, et al. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2011 ; 10 : 591–602. [CrossRef] [PubMed] [Google Scholar]
  42. Lamarque M, Besteiro S, Papoin J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011 ; 7 : e1001276. [CrossRef] [PubMed] [Google Scholar]
  43. Tonkin ML, Roques M, Lamarque MH, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 2011 ; 333 : 463–467. [CrossRef] [PubMed] [Google Scholar]
  44. Nagamune K, Moreno SN, Chini EN, Sibley LD. Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem 2008 ; 47 : 70–81. [CrossRef] [PubMed] [Google Scholar]
  45. Lourido S, Shuman J, Zhang C, et al. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010 ; 465 : 359–362. [CrossRef] [PubMed] [Google Scholar]
  46. Santos JM, Ferguson DJ, Blackman MJ, Soldati-Favre D. Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 2011 ; 331 : 473–477. [CrossRef] [PubMed] [Google Scholar]
  47. Pino P, Soldati-Favre D. Invasion et réplication chez les Apicomplexes–Tous les chemins mènent à ROM. Med Sci (Paris) 2011 ; 27 : 576–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. O’Donnell RA, Hackett F, Howell SA, et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 2006 ; 174 : 1023–1033. [CrossRef] [PubMed] [Google Scholar]
  49. Gonzalez V, Combe A, David V, et al. Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 2009 ; 5 : 259–272. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.