Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 5, Mai 2013
Page(s) 515 - 522
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013295015
Publié en ligne 28 mai 2013
  1. Frénal K, Soldati-Favre D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host Microbe 2009 ; 5 : 602–611. [CrossRef] [PubMed]
  2. Opitz C, Soldati D. “The glideosome”: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 2002 ; 45 : 597–604. [CrossRef] [PubMed]
  3. Carruthers V, Boothroyd JC. Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 2007 ; 10 : 83–89. [CrossRef] [PubMed]
  4. Mordue DG, Sibley LD. Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. J Immunol 1997 ; 159 : 4452–4459. [PubMed]
  5. Biot C, Botte CY, Dubar F, Marechal E. Paludisme–Recherche de nouvelles approches thérapeutiques ciblant l’apicoplaste, un organite cellulaire d’origine algale. Med Sci (Paris) 2012 ; 28 : 163–171. [CrossRef] [EDP Sciences] [PubMed]
  6. Baunaure F, Langsley G. Trafic protéique dans le globule rouge infecté par Plasmodium. Med Sci (Paris) 2005 ; 21 : 523–529. [CrossRef] [EDP Sciences] [PubMed]
  7. Morrissette NS, Murray JM, Roos DS. Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 1997 ; 110 : 35–42. [PubMed]
  8. King CA. Cell motility of sporozoan protozoa. Parasitol Today 1988 ; 4 : 315–319. [CrossRef] [PubMed]
  9. Vanderberg JP. Studies on the motility of Plasmodium sporozoites. J Protozool 1974 ; 21 : 527–537. [PubMed]
  10. Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 2002 ; 66 : 21–38. [CrossRef] [PubMed]
  11. Sahoo N, Beatty W, Heuser J, et al. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 2006 ; 17 : 895–906. [CrossRef] [PubMed]
  12. Schmitz S, Grainger M, Howell S, et al. Malaria parasite actin filaments are very short. J Mol Biol 2005 ; 349 : 113–125. [CrossRef] [PubMed]
  13. Skillman KM, Diraviyam K, Khan A, et al. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 2011 ; 7 : e1002280. [CrossRef] [PubMed]
  14. Wetzel DM, Hakansson S, Hu K, et al. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 2003 ; 14 : 396–406. [CrossRef] [PubMed]
  15. Gordon JL, Sibley LD. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 2005 ; 6 : 179. [CrossRef] [PubMed]
  16. Daher W, Plattner F, Carlier MF, Soldati-Favre D. Concerted action of two formins in gliding motility, host cell invasion by Toxoplasma gondii. PLoS Pathog 2010 ; 6 : e1001132. [CrossRef] [PubMed]
  17. Skillman KM, Daher W, Ma CI, et al. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro. Biochemistry 2012 ; 51 : 2486–2495. [CrossRef] [PubMed]
  18. Mehta S, Sibley LD. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 2010 ; 285 : 6835–6847. [CrossRef] [PubMed]
  19. Mehta S, Sibley LD. Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. Mol Biol Cell 2011 ; 22 : 1290–1299. [CrossRef] [PubMed]
  20. Plattner F, Yarovinsky F, Romero S, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 2008 ; 3 : 77–87. [CrossRef] [PubMed]
  21. Baum J, Tonkin CJ, Paul AS, et al. A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. Cell Host Microbe 2008 ; 3 : 188–198. [CrossRef] [PubMed]
  22. Friedrich N, Matthews S, Soldati-Favre D. Sialic acids: key determinants for invasion by the Apicomplexa. Int J Parasitol 2010 ; 40 : 1145–1154. [CrossRef] [PubMed]
  23. Frénal K, Polonais V, Marq JB, et al. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 2010 ; 8 : 343–357. [CrossRef] [PubMed]
  24. Gaskins E, Gilk S, DeVore N, et al. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 2004 ; 165 : 383–393. [CrossRef] [PubMed]
  25. Buscaglia CA, Coppens I, Hol WG, Nussenzweig V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol Biol Cell 2003 ; 14 : 4947–4957. [CrossRef] [PubMed]
  26. Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 2003 ; 11 : 885–894. [CrossRef] [PubMed]
  27. Starnes GL, Jewett TJ, Carruthers VB, Sibley LD. Two separate, conserved acidic amino acid domains within the Toxoplasma gondii MIC2 cytoplasmic tail are required for parasite survival. J Biol Chem 2006 ; 281 : 30745–30754. [CrossRef] [PubMed]
  28. Buguliskis JS, Brossier F, Shuman J, Sibley LD. Rhomboid 4 (ROM4) affects the processing of surface adhesins, facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog 2010 ; 6 : e1000858. [CrossRef] [PubMed]
  29. Ejigiri I, Ragheb DR, Pino P, et al. Shedding of TRAP by a rhomboid protease from the malaria sporozoite surface is essential for gliding motility, sporozoite infectivity. PLoS Pathog 2012 ; 8 : e1002725. [CrossRef] [PubMed]
  30. Herm-Gotz A, Weiss S, Stratmann R, et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 2002 ; 21 : 2149–2158. [CrossRef] [PubMed]
  31. Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 2002 ; 298 : 837–840. [CrossRef] [PubMed]
  32. Nebl T, Prieto JH, Kapp E, et al. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites, identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 2011 ; 7 : e1002222. [CrossRef] [PubMed]
  33. Gilk SD, Gaskins E, Ward GE, Beckers CJ. GAP45 phosphorylation controls assemblyof the Toxoplasma myosin XIV complex. Eukaryot Cell 2009 ; 8 : 190–196. [CrossRef] [PubMed]
  34. Jones ML, Cottingham C, Rayner JC. Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). Mol Biochem Parasitol 2009 ; 168 : 55–62. [CrossRef] [PubMed]
  35. Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol 1978 ; 77 : 72–82. [CrossRef] [PubMed]
  36. Alexander DL, Mital J, Ward GE, et al. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005 ; 1 : e17. [CrossRef] [PubMed]
  37. Lebrun M, Michelin A, El Hajj H, et al. The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol 2005 ; 7 : 1823–1833. [CrossRef] [PubMed]
  38. Riglar DT, Richard D, Wilson DW, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011 ; 9 : 9–20. [CrossRef] [PubMed]
  39. Besteiro S, Michelin A, Poncet J, et al. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009 ; 5 : e1000309. [CrossRef] [PubMed]
  40. Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005 ; 16 : 4341–4349. [CrossRef] [PubMed]
  41. Giovannini D, Spath S, Lacroix C, et al. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 2011 ; 10 : 591–602. [CrossRef] [PubMed]
  42. Lamarque M, Besteiro S, Papoin J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011 ; 7 : e1001276. [CrossRef] [PubMed]
  43. Tonkin ML, Roques M, Lamarque MH, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 2011 ; 333 : 463–467. [CrossRef] [PubMed]
  44. Nagamune K, Moreno SN, Chini EN, Sibley LD. Calcium regulation and signaling in apicomplexan parasites. Subcell Biochem 2008 ; 47 : 70–81. [CrossRef] [PubMed]
  45. Lourido S, Shuman J, Zhang C, et al. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010 ; 465 : 359–362. [CrossRef] [PubMed]
  46. Santos JM, Ferguson DJ, Blackman MJ, Soldati-Favre D. Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 2011 ; 331 : 473–477. [CrossRef] [PubMed]
  47. Pino P, Soldati-Favre D. Invasion et réplication chez les Apicomplexes–Tous les chemins mènent à ROM. Med Sci (Paris) 2011 ; 27 : 576–578. [CrossRef] [EDP Sciences] [PubMed]
  48. O’Donnell RA, Hackett F, Howell SA, et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 2006 ; 174 : 1023–1033. [CrossRef] [PubMed]
  49. Gonzalez V, Combe A, David V, et al. Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe 2009 ; 5 : 259–272. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.