Free Access
Med Sci (Paris)
Volume 29, Number 5, Mai 2013
Page(s) 449 - 452
Section Nouvelles
Published online 28 May 2013
  1. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec 1940 ; 78 : 149–172. [CrossRef] [Google Scholar]
  2. Moran TH, Ladenheim EE, Schwartz GJ. Within-meal gut feedback signaling. Int J Obes Relat Metab Disord 2001 ; 25 : S39–S41. [CrossRef] [PubMed] [Google Scholar]
  3. Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008 ; 93 : S37–S50. [CrossRef] [PubMed] [Google Scholar]
  4. Jordan SD, Konner AC, Bruning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 2010 ; 67 : 3255–3273. [CrossRef] [PubMed] [Google Scholar]
  5. Schwartz GJ. Central leucine sensing in the control of energy homeostasis. Endocrinol Metab Clin North Am 2013 ; 42 : 81–87. [CrossRef] [PubMed] [Google Scholar]
  6. Grill HJ, Kaplan JM. Interoceptive and integrative contributions of forebrain and brainstem to energy balance control. Int J Obes Relat Metab Disord 2001 ; 25 : S73–S77. [CrossRef] [PubMed] [Google Scholar]
  7. Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity 2006 ; 14 : S216–S221. [CrossRef] [Google Scholar]
  8. Yeo GS, Heisler LK. Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 2012 ; 15 : 1343–1349. [CrossRef] [PubMed] [Google Scholar]
  9. Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R655–R664. [CrossRef] [PubMed] [Google Scholar]
  10. Jo YH, Su Y, Gutierrez-Juarez R, Chua S Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 2009 ; 101 : 2305–2316. [CrossRef] [PubMed] [Google Scholar]
  11. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009 ; 29 : 8302–8311. [CrossRef] [PubMed] [Google Scholar]
  12. Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol 2012 : 277–294. [CrossRef] [PubMed] [Google Scholar]
  13. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab 2012 ; 16 : 579–587. [CrossRef] [PubMed] [Google Scholar]
  14. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012 ; 16 : 296–309. [CrossRef] [PubMed] [Google Scholar]
  15. Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 1996 ; 20 : 47–56. [CrossRef] [PubMed] [Google Scholar]
  16. Berthoud HR, Sutton GM, Townsend RL, et al. Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav 2006 ; 89 : 517–524. [CrossRef] [PubMed] [Google Scholar]
  17. Williams DL, Baskin DG, Schwartz MW. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R1238–R1246. [CrossRef] [PubMed] [Google Scholar]
  18. Hayes MR, Bradley L, Grill HJ. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 2009 ; 150 : 2654–2659. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.