Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 5, Mai 2013
Page(s) 449 - 452
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2013295002
Publié en ligne 28 mai 2013
  1. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec 1940 ; 78 : 149–172. [CrossRef] [Google Scholar]
  2. Moran TH, Ladenheim EE, Schwartz GJ. Within-meal gut feedback signaling. Int J Obes Relat Metab Disord 2001 ; 25 : S39–S41. [CrossRef] [PubMed] [Google Scholar]
  3. Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008 ; 93 : S37–S50. [CrossRef] [PubMed] [Google Scholar]
  4. Jordan SD, Konner AC, Bruning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 2010 ; 67 : 3255–3273. [CrossRef] [PubMed] [Google Scholar]
  5. Schwartz GJ. Central leucine sensing in the control of energy homeostasis. Endocrinol Metab Clin North Am 2013 ; 42 : 81–87. [CrossRef] [PubMed] [Google Scholar]
  6. Grill HJ, Kaplan JM. Interoceptive and integrative contributions of forebrain and brainstem to energy balance control. Int J Obes Relat Metab Disord 2001 ; 25 : S73–S77. [CrossRef] [PubMed] [Google Scholar]
  7. Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity 2006 ; 14 : S216–S221. [CrossRef] [Google Scholar]
  8. Yeo GS, Heisler LK. Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 2012 ; 15 : 1343–1349. [CrossRef] [PubMed] [Google Scholar]
  9. Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R655–R664. [CrossRef] [PubMed] [Google Scholar]
  10. Jo YH, Su Y, Gutierrez-Juarez R, Chua S Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 2009 ; 101 : 2305–2316. [CrossRef] [PubMed] [Google Scholar]
  11. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009 ; 29 : 8302–8311. [CrossRef] [PubMed] [Google Scholar]
  12. Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol 2012 : 277–294. [CrossRef] [PubMed] [Google Scholar]
  13. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab 2012 ; 16 : 579–587. [CrossRef] [PubMed] [Google Scholar]
  14. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012 ; 16 : 296–309. [CrossRef] [PubMed] [Google Scholar]
  15. Schwartz GJ, Moran TH. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci Biobehav Rev 1996 ; 20 : 47–56. [CrossRef] [PubMed] [Google Scholar]
  16. Berthoud HR, Sutton GM, Townsend RL, et al. Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav 2006 ; 89 : 517–524. [CrossRef] [PubMed] [Google Scholar]
  17. Williams DL, Baskin DG, Schwartz MW. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2009 ; 297 : R1238–R1246. [CrossRef] [PubMed] [Google Scholar]
  18. Hayes MR, Bradley L, Grill HJ. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 2009 ; 150 : 2654–2659. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.