Free Access
Issue
Med Sci (Paris)
Volume 28, Number 11, Novembre 2012
Page(s) 958 - 962
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20122811014
Published online 12 November 2012
  1. Lemaigre FP. Mechanisms of liver development : concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009 ; 137 : 62–79. [CrossRef] [PubMed] [Google Scholar]
  2. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010 ; 18 : 175–189. [CrossRef] [PubMed] [Google Scholar]
  3. Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 1988 ; 48 : 4909–4918. [PubMed] [Google Scholar]
  4. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken) 2008 ; 291 : 628–635. [CrossRef] [PubMed] [Google Scholar]
  5. Clotman F, Lannoy VJ, Reber M, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002 ; 129 : 1819–1828. [PubMed] [Google Scholar]
  6. Clotman F, Jacquemin P, Plumb-Rudewiez N, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005 ; 19 : 1849–1854. [CrossRef] [PubMed] [Google Scholar]
  7. Hunter MP, Wilson CM, Jiang X, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007 ; 308 : 355–367. [CrossRef] [PubMed] [Google Scholar]
  8. Lorent K, Yeo SY, Oda T, et al. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 2004 ; 131 : 5753–5766. [CrossRef] [PubMed] [Google Scholar]
  9. Clotman F, Libbrecht L, Killingsworth MC, et al. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Liver Int 2008 ; 28 : 377–384. [CrossRef] [PubMed] [Google Scholar]
  10. Antoniou A, Raynaud P, Cordi S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009 ; 136 : 2325–2333. [CrossRef] [PubMed] [Google Scholar]
  11. Van Eyken P, Sciot R, Callea F, et al. The development of the intrahepatic bile ducts in man : a keratin-immunohistochemical study. Hepatology 1988 ; 8 : 1586–1595. [CrossRef] [PubMed] [Google Scholar]
  12. Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol 2011 ; 43 : 245–256. [CrossRef] [PubMed] [Google Scholar]
  13. Crawford AR, Lin XZ, Crawford JM. The normal adult human liver biopsy : a quantitative reference standard. Hepatology 1998 ; 28 : 323–331. [CrossRef] [PubMed] [Google Scholar]
  14. Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol 1995 ; 146 : 67–74. [PubMed] [Google Scholar]
  15. Carpentier R, Suner RE, Van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011 ; 141 : 1432–1438. [CrossRef] [PubMed] [Google Scholar]
  16. Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011 ; 138 : 653–665. [CrossRef] [PubMed] [Google Scholar]
  17. Asahina K, Tsai SY, Li P, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 2009 ; 49 : 998–1011. [CrossRef] [PubMed] [Google Scholar]
  18. Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 2011 ; 53 : 983–995. [CrossRef] [PubMed] [Google Scholar]
  19. Cassiman D, Barlow A, Vander Borght S, et al. Hepatic stellate cells do not derive from the neural crest. J Hepatol 2006 ; 44 : 1098–1104. [CrossRef] [PubMed] [Google Scholar]
  20. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, et al. Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn 2004 ; 229 : 465–474. [CrossRef] [PubMed] [Google Scholar]
  21. Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011 ; 43 : 34–41. [CrossRef] [PubMed] [Google Scholar]
  22. Iverson SV, Comstock KM, Kundert JA, Schmidt EE. Contributions of new hepatocyte lineages to liver growth, maintenance, and regeneration in mice. Hepatology 2011 ; 54 : 655–663. [CrossRef] [PubMed] [Google Scholar]
  23. Malato Y, Naqvi S, Schurmann N, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 2011 ; 121 : 4850–4860. [CrossRef] [PubMed] [Google Scholar]
  24. Michalopoulos GK. Liver regeneration : alternative epithelial pathways. Int J Biochem Cell Biol 2011 ; 43 : 173–179. [CrossRef] [PubMed] [Google Scholar]
  25. Laperche Y. Origine des cellules ovales hépatiques. Med Sci (Paris) 2007 ; 23 : 480–482. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.