Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 11, Novembre 2012
Page(s) 958 - 962
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20122811014
Publié en ligne 12 novembre 2012
  1. Lemaigre FP. Mechanisms of liver development : concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009 ; 137 : 62–79. [CrossRef] [PubMed]
  2. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010 ; 18 : 175–189. [CrossRef] [PubMed]
  3. Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 1988 ; 48 : 4909–4918. [PubMed]
  4. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken) 2008 ; 291 : 628–635. [CrossRef] [PubMed]
  5. Clotman F, Lannoy VJ, Reber M, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002 ; 129 : 1819–1828. [PubMed]
  6. Clotman F, Jacquemin P, Plumb-Rudewiez N, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005 ; 19 : 1849–1854. [CrossRef] [PubMed]
  7. Hunter MP, Wilson CM, Jiang X, et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007 ; 308 : 355–367. [CrossRef] [PubMed]
  8. Lorent K, Yeo SY, Oda T, et al. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 2004 ; 131 : 5753–5766. [CrossRef] [PubMed]
  9. Clotman F, Libbrecht L, Killingsworth MC, et al. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Liver Int 2008 ; 28 : 377–384. [CrossRef] [PubMed]
  10. Antoniou A, Raynaud P, Cordi S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009 ; 136 : 2325–2333. [CrossRef] [PubMed]
  11. Van Eyken P, Sciot R, Callea F, et al. The development of the intrahepatic bile ducts in man : a keratin-immunohistochemical study. Hepatology 1988 ; 8 : 1586–1595. [CrossRef] [PubMed]
  12. Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol 2011 ; 43 : 245–256. [CrossRef] [PubMed]
  13. Crawford AR, Lin XZ, Crawford JM. The normal adult human liver biopsy : a quantitative reference standard. Hepatology 1998 ; 28 : 323–331. [CrossRef] [PubMed]
  14. Terada T, Nakanuma Y. Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol 1995 ; 146 : 67–74. [PubMed]
  15. Carpentier R, Suner RE, Van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011 ; 141 : 1432–1438. [CrossRef] [PubMed]
  16. Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011 ; 138 : 653–665. [CrossRef] [PubMed]
  17. Asahina K, Tsai SY, Li P, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 2009 ; 49 : 998–1011. [CrossRef] [PubMed]
  18. Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 2011 ; 53 : 983–995. [CrossRef] [PubMed]
  19. Cassiman D, Barlow A, Vander Borght S, et al. Hepatic stellate cells do not derive from the neural crest. J Hepatol 2006 ; 44 : 1098–1104. [CrossRef] [PubMed]
  20. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, et al. Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn 2004 ; 229 : 465–474. [CrossRef] [PubMed]
  21. Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011 ; 43 : 34–41. [CrossRef] [PubMed]
  22. Iverson SV, Comstock KM, Kundert JA, Schmidt EE. Contributions of new hepatocyte lineages to liver growth, maintenance, and regeneration in mice. Hepatology 2011 ; 54 : 655–663. [CrossRef] [PubMed]
  23. Malato Y, Naqvi S, Schurmann N, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 2011 ; 121 : 4850–4860. [CrossRef] [PubMed]
  24. Michalopoulos GK. Liver regeneration : alternative epithelial pathways. Int J Biochem Cell Biol 2011 ; 43 : 173–179. [CrossRef] [PubMed]
  25. Laperche Y. Origine des cellules ovales hépatiques. Med Sci (Paris) 2007 ; 23 : 480–482. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.