Free Access
Issue
Med Sci (Paris)
Volume 28, Number 10, Octobre 2012
Page(s) 858 - 863
Section Récepteurs couplés aux protéines G
DOI https://doi.org/10.1051/medsci/20122810014
Published online 12 October 2012
  1. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004 ; 5 : 30–34. [CrossRef] [PubMed] [Google Scholar]
  2. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004 ; 84 : 835–867. [CrossRef] [PubMed] [Google Scholar]
  3. Kaupmann K, Malitschek B, Schuler V, et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998 ; 396 : 683–687. [CrossRef] [PubMed] [Google Scholar]
  4. Bettler B, Tiao JY. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006 ; 110 : 533–543. [CrossRef] [PubMed] [Google Scholar]
  5. Kniazeff J, Galvez T, Labesse G, Pin JP. No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002 ; 22 : 7352–7361. [PubMed] [Google Scholar]
  6. Galvez T, Duthey B, Kniazeff J, et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 2001 ; 20 : 2152–2159. [CrossRef] [PubMed] [Google Scholar]
  7. Maurice P, Kamal M, Jockers R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 2011 ; 32 : 514–520. [CrossRef] [PubMed] [Google Scholar]
  8. Galvez T, Parmentier ML, Joly C, et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 1999 ; 274 : 13362–13369. [CrossRef] [PubMed] [Google Scholar]
  9. Pagano A, Rovelli G, Mosbacher J, et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 2001 ; 21 : 1189–1202. [PubMed] [Google Scholar]
  10. Brock C, Boudier L, Maurel D, et al. Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14–3-3. Mol Biol Cell 2005 ; 16 : 5572–5578. [CrossRef] [PubMed] [Google Scholar]
  11. Galvez T, Pin JP. Comment fonctionne un récepteur couplé aux protéines G ? Le cas des récepteurs métabotropiques du glutamate et du GABA. Med Sci (Paris) 2003 ; 19 : 559–565. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Pin JP, Kniazeff J, Liu J, et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 2005 ; 272 : 2947–2955. [CrossRef] [PubMed] [Google Scholar]
  13. Galvez T, Prezeau L, Milioti G, et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 2000 ; 275 : 41166–41174. [CrossRef] [PubMed] [Google Scholar]
  14. Binet V, Duthey B, Lecaillon J, et al. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J Biol Chem 2007 ; 282 : 12154–12163. [CrossRef] [PubMed] [Google Scholar]
  15. Rondard P, Huang S, Monnier C, et al. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO J 2008 ; 27 : 1321–1332. [CrossRef] [PubMed] [Google Scholar]
  16. Monnier C, Tu H, Bourrier E, et al. Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J 2011 ; 30 : 32–42. [CrossRef] [PubMed] [Google Scholar]
  17. Binet V, Brajon C, Le Corre L, et al. The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 2004 ; 279 : 29085–29091. [CrossRef] [PubMed] [Google Scholar]
  18. Kniazeff J, Saintot PP, Goudet C, et al. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004 ; 24 : 370–377. [CrossRef] [PubMed] [Google Scholar]
  19. Limbird LE, Meyts PD, Lefkowitz RJ. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun 1975 ; 64 : 1160–1168. [CrossRef] [PubMed] [Google Scholar]
  20. Hebert TE, Moffett S, Morello JP, et al. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996 ; 271 : 16384–16392. [CrossRef] [PubMed] [Google Scholar]
  21. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular cross-talk between G-protein-linked receptors. Proc Natl Acad Sci USA 1993 ; 90 : 3103–3107. [CrossRef] [Google Scholar]
  22. Angers S, Salahpour A, Joly E, et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 2000 ; 97 : 3684–3689. [Google Scholar]
  23. Maurel D, Kniazeff J, Mathis G, et al. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 2004 ; 329 : 253–262. [CrossRef] [PubMed] [Google Scholar]
  24. Albizu L, Cottet M, Kralikova M, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 2010 ; 6 : 587–594. [CrossRef] [PubMed] [Google Scholar]
  25. Doumazane E, Scholler P, Zwier JM, et al. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 2011 ; 25 : 66–77. [CrossRef] [PubMed] [Google Scholar]
  26. Maurel D, Comps-Agrar L, Brock C, et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 2008 ; 5 : 561–567. [CrossRef] [PubMed] [Google Scholar]
  27. Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, et al. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011 ; 30 : 2336–2349. [CrossRef] [PubMed] [Google Scholar]
  28. Schwenk J, Metz M, Zolles G, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 2010 ; 465 : 231–235. [CrossRef] [PubMed] [Google Scholar]
  29. Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009 ; 462 : 745–756. [CrossRef] [PubMed] [Google Scholar]
  30. Bockaert J, Fagni L, Dumuis A, Marin P. GPCR interacting proteins (GIP). Pharmacol Ther 2004 ; 103 : 203–221. [CrossRef] [PubMed] [Google Scholar]
  31. Maurice P, Daulat AM, Turecek R, et al. Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J 2010 ; 29 : 3646–3659. [CrossRef] [PubMed] [Google Scholar]
  32. Jockers R, Gbahou F, Tadagaki K, Kamal M. Oligomérisation des protéines humaines et virales à sept domaines transmembranaires : nouvelle stratégie virale pour manipuler la cellule hôte. Med Sci (Paris) 2012 ; 28 : 864–869. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.