Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 10, Octobre 2012
Page(s) 858 - 863
Section Récepteurs couplés aux protéines G
DOI https://doi.org/10.1051/medsci/20122810014
Publié en ligne 12 octobre 2012
  1. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004 ; 5 : 30–34. [CrossRef] [PubMed] [Google Scholar]
  2. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004 ; 84 : 835–867. [CrossRef] [PubMed] [Google Scholar]
  3. Kaupmann K, Malitschek B, Schuler V, et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998 ; 396 : 683–687. [CrossRef] [PubMed] [Google Scholar]
  4. Bettler B, Tiao JY. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006 ; 110 : 533–543. [CrossRef] [PubMed] [Google Scholar]
  5. Kniazeff J, Galvez T, Labesse G, Pin JP. No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002 ; 22 : 7352–7361. [PubMed] [Google Scholar]
  6. Galvez T, Duthey B, Kniazeff J, et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 2001 ; 20 : 2152–2159. [CrossRef] [PubMed] [Google Scholar]
  7. Maurice P, Kamal M, Jockers R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 2011 ; 32 : 514–520. [CrossRef] [PubMed] [Google Scholar]
  8. Galvez T, Parmentier ML, Joly C, et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 1999 ; 274 : 13362–13369. [CrossRef] [PubMed] [Google Scholar]
  9. Pagano A, Rovelli G, Mosbacher J, et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 2001 ; 21 : 1189–1202. [PubMed] [Google Scholar]
  10. Brock C, Boudier L, Maurel D, et al. Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14–3-3. Mol Biol Cell 2005 ; 16 : 5572–5578. [CrossRef] [PubMed] [Google Scholar]
  11. Galvez T, Pin JP. Comment fonctionne un récepteur couplé aux protéines G ? Le cas des récepteurs métabotropiques du glutamate et du GABA. Med Sci (Paris) 2003 ; 19 : 559–565. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Pin JP, Kniazeff J, Liu J, et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 2005 ; 272 : 2947–2955. [CrossRef] [PubMed] [Google Scholar]
  13. Galvez T, Prezeau L, Milioti G, et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 2000 ; 275 : 41166–41174. [CrossRef] [PubMed] [Google Scholar]
  14. Binet V, Duthey B, Lecaillon J, et al. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J Biol Chem 2007 ; 282 : 12154–12163. [CrossRef] [PubMed] [Google Scholar]
  15. Rondard P, Huang S, Monnier C, et al. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO J 2008 ; 27 : 1321–1332. [CrossRef] [PubMed] [Google Scholar]
  16. Monnier C, Tu H, Bourrier E, et al. Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J 2011 ; 30 : 32–42. [CrossRef] [PubMed] [Google Scholar]
  17. Binet V, Brajon C, Le Corre L, et al. The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 2004 ; 279 : 29085–29091. [CrossRef] [PubMed] [Google Scholar]
  18. Kniazeff J, Saintot PP, Goudet C, et al. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004 ; 24 : 370–377. [CrossRef] [PubMed] [Google Scholar]
  19. Limbird LE, Meyts PD, Lefkowitz RJ. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun 1975 ; 64 : 1160–1168. [CrossRef] [PubMed] [Google Scholar]
  20. Hebert TE, Moffett S, Morello JP, et al. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996 ; 271 : 16384–16392. [CrossRef] [PubMed] [Google Scholar]
  21. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular cross-talk between G-protein-linked receptors. Proc Natl Acad Sci USA 1993 ; 90 : 3103–3107. [CrossRef] [Google Scholar]
  22. Angers S, Salahpour A, Joly E, et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 2000 ; 97 : 3684–3689. [Google Scholar]
  23. Maurel D, Kniazeff J, Mathis G, et al. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 2004 ; 329 : 253–262. [CrossRef] [PubMed] [Google Scholar]
  24. Albizu L, Cottet M, Kralikova M, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 2010 ; 6 : 587–594. [CrossRef] [PubMed] [Google Scholar]
  25. Doumazane E, Scholler P, Zwier JM, et al. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 2011 ; 25 : 66–77. [CrossRef] [PubMed] [Google Scholar]
  26. Maurel D, Comps-Agrar L, Brock C, et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 2008 ; 5 : 561–567. [CrossRef] [PubMed] [Google Scholar]
  27. Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, et al. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011 ; 30 : 2336–2349. [CrossRef] [PubMed] [Google Scholar]
  28. Schwenk J, Metz M, Zolles G, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 2010 ; 465 : 231–235. [CrossRef] [PubMed] [Google Scholar]
  29. Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2009 ; 462 : 745–756. [CrossRef] [PubMed] [Google Scholar]
  30. Bockaert J, Fagni L, Dumuis A, Marin P. GPCR interacting proteins (GIP). Pharmacol Ther 2004 ; 103 : 203–221. [CrossRef] [PubMed] [Google Scholar]
  31. Maurice P, Daulat AM, Turecek R, et al. Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J 2010 ; 29 : 3646–3659. [CrossRef] [PubMed] [Google Scholar]
  32. Jockers R, Gbahou F, Tadagaki K, Kamal M. Oligomérisation des protéines humaines et virales à sept domaines transmembranaires : nouvelle stratégie virale pour manipuler la cellule hôte. Med Sci (Paris) 2012 ; 28 : 864–869. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.