Free Access
Issue
Med Sci (Paris)
Volume 28, Number 8-9, Août–Septembre 2012
Page(s) 714 - 716
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2012288014
Published online 22 August 2012
  1. Agarwal S, Tafel AA, Kanaar R. DNA double-strand break repair and chromosome translocations. DNA Repair (Amst) 2006 ; 5 : 1075–1081. [CrossRef] [PubMed] [Google Scholar]
  2. Misteli T. Beyond the sequence: cellular organization of genome function. Cell 2007 ; 128 : 787–800. [CrossRef] [PubMed] [Google Scholar]
  3. Barzel A, Kupiec M. Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 2008 ; 9 : 27–37. [CrossRef] [PubMed] [Google Scholar]
  4. Marshall WF, Straight A, Marko JF, et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 1997 ; 7 : 930–939. [CrossRef] [PubMed] [Google Scholar]
  5. Heun P, Laroche T, Shimada K, et al. Chromosome dynamics in the yeast interphase nucleus. Science 2001 ; 294 : 2181–2186. [CrossRef] [PubMed] [Google Scholar]
  6. Lisby M, Mortensen UH, Rothstein R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 2003 ; 5 : 572–577. [CrossRef] [PubMed] [Google Scholar]
  7. Aten JA, Stap J, Krawczyk PM, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 2004 ; 303 : 92–95. [CrossRef] [PubMed] [Google Scholar]
  8. Nagai S, Dubrana K, Tsai-Pflugfelder M, et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 2008 ; 322 : 597–602. [CrossRef] [PubMed] [Google Scholar]
  9. Kalocsay M, Hiller NJ, Jentsch S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell 2009 ; 33 : 335–343. [CrossRef] [PubMed] [Google Scholar]
  10. Dimitrova N, Chen YC, Spector DL, de Lange T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 2008 ; 456 : 524–528. [CrossRef] [PubMed] [Google Scholar]
  11. Oza P, Jaspersen SL, Miele A, et al. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 2009 ; 23 : 912–927. [CrossRef] [PubMed] [Google Scholar]
  12. Chiolo I, Minoda A, Colmenares SU, et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 2011 ; 144 : 732–744. [CrossRef] [PubMed] [Google Scholar]
  13. Miné-Hattab J, Rothstein R. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 2012 ; 14 : 510–517. [CrossRef] [PubMed] [Google Scholar]
  14. Dion V, Kalck V, Horigome C, et al. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 2012 ; 14 : 502–509. [CrossRef] [PubMed] [Google Scholar]
  15. Krawczyk PM, Borovski T, Stap J, et al. Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci 2012 ; 125 : 2127–2133. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.