Free Access
Med Sci (Paris)
Volume 28, Number 6-7, Juin–Juillet 2012
Page(s) 618 - 624
Section M/S Revues
Published online 16 July 2012
  1. O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010 ; 11 : 171–181. [CrossRef] [PubMed] [Google Scholar]
  2. Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 2010 ; 584 : 3819–3825. [CrossRef] [PubMed] [Google Scholar]
  3. Londoño-Vallejo A, Lenain C, Gilson E. Cibler les télomères pour forcer les cellules cancéreuses à rentrer en sénescence. Med Sci (Paris) 2008 ; 24 : 383–389. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998 ; 279 : 349–352. [CrossRef] [PubMed] [Google Scholar]
  5. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997 ; 33 : 787–791. [CrossRef] [PubMed] [Google Scholar]
  6. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005 ; 19 : 2100–2110. [CrossRef] [PubMed] [Google Scholar]
  7. Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol 2000 ; 110 : 768–779. [CrossRef] [PubMed] [Google Scholar]
  8. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008 ; 24 : 390–398. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Hreidarsson S, Kristjansson K, Johannesson G, et al. A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure. Acta Paediatr Scand 1988 ; 77 : 773–775. [CrossRef] [PubMed] [Google Scholar]
  10. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999 ; 402 : 551–555. [CrossRef] [PubMed] [Google Scholar]
  11. Heiss NS, Knight SW, Vulliamy TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998 ; 19 : 32–38. [CrossRef] [PubMed] [Google Scholar]
  12. Rashid R, Liang B, Baker DL, et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell 2006 ; 21 : 249–260. [CrossRef] [PubMed] [Google Scholar]
  13. Zeng XL, Thumati NR, Fleisig HB, et al. The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita. Hum Mol Genet 2011 ; 21 : 721–729. [CrossRef] [PubMed] [Google Scholar]
  14. Vulliamy T, Marrone A, Goldman F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001 ; 413 : 432–435. [CrossRef] [PubMed] [Google Scholar]
  15. Ly H, Calado RT, Allard P, et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood 2005 ; 105 : 2332–2339. [CrossRef] [PubMed] [Google Scholar]
  16. Du HY, Idol R, Robledo S, et al. Telomerase reverse transcriptase haploinsufficiency and telomere length in individuals with 5p-syndrome. Aging Cell 2007 ; 6 : 689–697. [CrossRef] [PubMed] [Google Scholar]
  17. Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 2008 ; 82 : 501–509. [CrossRef] [PubMed] [Google Scholar]
  18. Canudas S, Houghtaling BR, Bhanot M, et al. A role for heterochromatin protein 1γ at human telomeres. Genes Dev 2011 ; 25 : 1807–1819. [CrossRef] [PubMed] [Google Scholar]
  19. Yang D, He Q, Kim H, et al. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J Biol Chem 2011 ; 286 : 23022–23030. [CrossRef] [PubMed] [Google Scholar]
  20. Walne AJ, Vulliamy T, Marrone A, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007 ; 16 : 1619–1629. [CrossRef] [PubMed] [Google Scholar]
  21. Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 2008 ; 105 : 8073–8078. [CrossRef] [Google Scholar]
  22. Zhong F, Savage SA, Shkreli M, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 2011 ; 25 : 11–16. [CrossRef] [PubMed] [Google Scholar]
  23. Walne AJ, Vulliamy T, Beswick R, et al. Mutations in C16orf57 and normal-length telomeres unify a subset of patients with dyskeratosis congenita, poikiloderma with neutropenia and Rothmund-Thomson syndrome. Hum Mol Genet 2010 ; 19 : 4453–4461. [CrossRef] [PubMed] [Google Scholar]
  24. Du HY, Pumbo E, Ivanovich J, et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood 2009 ; 113 : 309–316. [CrossRef] [PubMed] [Google Scholar]
  25. Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots, qPCR. Nucleic Acids Res 2011 ; 39 : e134. [CrossRef] [PubMed] [Google Scholar]
  26. Alter BP, Baerlocher GM, Savage SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007 ; 110 : 1439–1447. [CrossRef] [PubMed] [Google Scholar]
  27. Vulliamy T, Marrone A, Szydlo R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004 ; 36 : 447–449. [CrossRef] [PubMed] [Google Scholar]
  28. Vulliamy TJ, Kirwan MJ, Beswick R, et al. Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One 2011 ; 6 : e24383. [CrossRef] [PubMed] [Google Scholar]
  29. Alter BP, Rosenberg PS, Giri N, et al. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica 2011 ; 97 : 353–359. [CrossRef] [PubMed] [Google Scholar]
  30. Touzot F, Gaillard L, Vasquez N, et al. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J Allergy Clin Immunol 2011 ; 129 : 473–482. [CrossRef] [PubMed] [Google Scholar]
  31. Revy P, Busslinger M, Tashiro K, et al. A syndrome involving intrauterine growth retardation, microcephaly, cerebellar hypoplasia, B lymphocyte deficiency, progressive pancytopenia. Pediatrics 2000 ; 105 : E39. [CrossRef] [PubMed] [Google Scholar]
  32. Touzot F, Callebaut I, Soulier J, et al. Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci USA 2010 ; 107 : 10097–10102. [CrossRef] [Google Scholar]
  33. Ye J, Lenain C, Bauwens S, et al. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010 ; 142 : 230–242. [CrossRef] [PubMed] [Google Scholar]
  34. Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004 ; 23 : 8611–8618. [CrossRef] [PubMed] [Google Scholar]
  35. Zinsser F. Atrophia cutis reticularis cum pigtnentatione, dystrophia unguim et leukuplakia oris. Ikonographia Dermatol (Hyoto) 1910 ; 5 : 219–223. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.