Free Access
Med Sci (Paris)
Volume 28, Number 6-7, Juin–Juillet 2012
Page(s) 584 - 587
Section Nouvelles
Published online 16 July 2012
  1. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999 ; 282 : 2035–2042. [Google Scholar]
  2. Boon RA, Horrevoets AJ. Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie 2009 ; 29 : 39–40. [PubMed] [Google Scholar]
  3. Kuo CT, Veselits ML, Barton KP, et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 1997 ; 11 : 2996–3006. [CrossRef] [PubMed] [Google Scholar]
  4. Lee JS, Yu Q, Shin JT, et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 2006 ; 11 : 845–857. [CrossRef] [PubMed] [Google Scholar]
  5. Wu J, Bohanan CS, Neumann JC, Lingrel JB. KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 2008 ; 283 : 3942–3950. [CrossRef] [PubMed] [Google Scholar]
  6. Hergenreider E, Heydt S, Treguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012 ; 14 : 249–256. [CrossRef] [PubMed] [Google Scholar]
  7. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009 ; 136 : 215–233. [CrossRef] [PubMed] [Google Scholar]
  8. Bonauer A, Boon RA, Dimmeler S. Vascular microRNAs. Curr Drug Targets 2010 ; 11 : 943–949. [CrossRef] [PubMed] [Google Scholar]
  9. Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet 2011 ; 4 : 197–205. [CrossRef] [PubMed] [Google Scholar]
  10. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010 ; 56 : 1733–1741. [CrossRef] [PubMed] [Google Scholar]
  11. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011 ; 11 : 426–437. [CrossRef] [PubMed] [Google Scholar]
  12. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 2011 ; 31 : 2383–2390. [CrossRef] [PubMed] [Google Scholar]
  13. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012 ; 110 : 483–495. [CrossRef] [PubMed] [Google Scholar]
  14. Weickmann JL, Glitz DG. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem 1982 ; 257 : 8705–8710. [PubMed] [Google Scholar]
  15. Wang K, Zhang S, Weber J, et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010 ; 38 : 7248–7259. [CrossRef] [PubMed] [Google Scholar]
  16. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011 ; 108 : 5003–5008. [CrossRef] [Google Scholar]
  17. Dunoyer Patrice. La bataille du silence : mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sci (Paris) 25 : 5 505–512. [Google Scholar]
  18. Ladeiro Y, Zucman-Rossi J. Micro-ARN (miARN) et cancer : le cas des tumeurs hépatocellulaires. Med Sci (Paris) 25 : 5 467–472. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.