Free Access
Med Sci (Paris)
Volume 28, Number 5, Mai 2012
Page(s) 519 - 525
Section Cellules germinales et infertilité mâle
Published online 30 May 2012
  1. Orgebin-Crist MC, Danzo BJ, Davies J. Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis. In : Greep R, Hamilton DW, eds. Handbook of physiology-endocrinology V. Baltimore : Williams and Wilkins, 1975 : 319–338. [Google Scholar]
  2. Bedford JM. Maturation, transport and fate of spermatozoa in the epididymis. In : Greep R, Hamilton DW, eds. Handbook of physiology-endocrinology V. Baltimore : Williams and Wilkins, 1975 : 302–317. [Google Scholar]
  3. Hinton BT, Palladino MA, Rudolph D, Labus JC. The epididymis as protector of maturing spermatozoa. Reprod Fertil Dev 1995 ; 7 : 731–743. [CrossRef] [PubMed] [Google Scholar]
  4. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update 2009 ; 15 : 213–227. [CrossRef] [PubMed] [Google Scholar]
  5. Cornwall GA, von Horsten HH, Swartz D, et al. Extracellular quality control in the epididymis. Asian J Androl 2007 ; 9 : 500–507. [CrossRef] [PubMed] [Google Scholar]
  6. Gur Y, Breibart H. Protein synthesis in sperm : dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 2008 ; 282 : 45–53. [CrossRef] [PubMed] [Google Scholar]
  7. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa : comparison with somatic cells. Biol Reprod 1991 ; 44 : 569–574. [CrossRef] [PubMed] [Google Scholar]
  8. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa : more than the sum of its parts ? DNA, histones, protamines and epigenetics. Reproduction 2010 ; 139 : 287–301. [CrossRef] [PubMed] [Google Scholar]
  9. Migdal C, Serres M. Espèces oxygénées réactives et stress oxydant. Med Sci (Paris) 2011 ; 27 : 405–412. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Halliwell B, Gutteridge JM. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1984 ; 1 : 1396–1397. [CrossRef] [PubMed] [Google Scholar]
  11. Noblanc A, Kocer A, Chabory E, et al. Glutathione peroxidases at work on epididymal spermatozoa : an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J Androl 2011 ; 32 : 641–650. [CrossRef] [PubMed] [Google Scholar]
  12. Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil 1971 ; 13 : 65–75. [PubMed] [Google Scholar]
  13. Bedford JM, Calvin HI. Changes in -S-S- linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species. J Exp Zool 1974 ; 187 : 137–156. [CrossRef] [Google Scholar]
  14. Shalgi R, Seligman J, Kosover NS. Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod 1989 ; 40 : 1037–1045. [CrossRef] [PubMed] [Google Scholar]
  15. Seligman J, Kosower NS, Weissenberg R, Shalgi R. Thiol-disulfide status of human sperm proteins. J Reprod Fertil 1994 ; 101 : 435–454. [CrossRef] [PubMed] [Google Scholar]
  16. Balhorn R, Corzett M, Mazrimas J, Watkins B. Identification of bull protamine disulfides. Biochemistry 2001 ; 30 : 175–181. [CrossRef] [Google Scholar]
  17. Yeung CH, Barfield JP, Cooper TG. Physiological volume regulation by spermatozoa. Mol Cell Endocrinol 2006 ; 250 : 98–105. [CrossRef] [PubMed] [Google Scholar]
  18. Huang HF, Nieschlag E. Alteration of free sulphydryl content of rat sperm heads by suppression of intratesticular testosterone. J Reprod Fertil 1984 ; 70 : 31–38. [CrossRef] [PubMed] [Google Scholar]
  19. Golan R, Cooper TG, Oschry Y, et al. Changes in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Hum Reprod 1996 ; 11 : 1457–1462. [CrossRef] [PubMed] [Google Scholar]
  20. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 2006 ; 250 : 70–79. [CrossRef] [PubMed] [Google Scholar]
  21. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006 ; 41 : 528–540. [CrossRef] [PubMed] [Google Scholar]
  22. Conrad M, Moreno SG, Sinowatz F, et al. The nuclear form of phospholipids hydroperoxide glutathione is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 2005 ; 25 : 7637–7644. [CrossRef] [PubMed] [Google Scholar]
  23. Chabory E, Damon C, Lenoir A, et al. Epididymis seleno-independent glutathione peroxidase 5 (GPx5) contributes to the maintenance of sperm DNA integrity. J Clin Invest 2009 ; 119 : 2074–2085. [PubMed] [Google Scholar]
  24. Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997 ; 68 : 519–524. [CrossRef] [PubMed] [Google Scholar]
  25. Spano M, Bonde JP, Hjollund HI, et al. Sperm chromatin damage impairs human fertility. The Danish first pregnancy planner study team. Fertil Steril 2000 ; 73 : 43–50. [CrossRef] [PubMed] [Google Scholar]
  26. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001 ; 75 : 674–677. [CrossRef] [PubMed] [Google Scholar]
  27. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004 ; 19 : 611–615. [CrossRef] [PubMed] [Google Scholar]
  28. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 2005 ; 4 : 657–666. [Google Scholar]
  29. O’Brien J, Zini A. Sperm DNA integrity and male infertility. Urology 2005 ; 65 : 16–22. [CrossRef] [PubMed] [Google Scholar]
  30. Zini A, Libman J. Sperm DNA damage: importance in the era of assisted reproduction. Curr Opin Urol 2006 ; 16 : 428–434. [CrossRef] [PubMed] [Google Scholar]
  31. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ 2006 ; 175 : 495–500. [CrossRef] [PubMed] [Google Scholar]
  32. Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reprod Biomed Online 2006 ; 12 : 715–721. [CrossRef] [PubMed] [Google Scholar]
  33. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 2007 ; 33 : 603–621. [CrossRef] [PubMed] [Google Scholar]
  34. Marchesi DE, Feng HL. Sperm DNA integrity from sperm to egg. J Androl 2007 ; 28 : 481–489. [CrossRef] [PubMed] [Google Scholar]
  35. Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl 2008 ; 32 : 46–56. [CrossRef] [PubMed] [Google Scholar]
  36. Aoki VW, Moskovtsev SI, Willis J, et al. DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005 ; 26 : 741–748. [CrossRef] [PubMed] [Google Scholar]
  37. Sakkas D, Alvarez JG. Sperm DNA fragmentation : mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010 ; 93 : 1027–1036. [CrossRef] [PubMed] [Google Scholar]
  38. Al Rawi S, Galy V. L’allophagie, ou comment l’embryon élimine les mitochondries et autres organites paternels. Med Sci (Paris) 2012 ; 28 : 343–347. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.