Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 5, Mai 2012
Page(s) 519 - 525
Section Cellules germinales et infertilité mâle
DOI https://doi.org/10.1051/medsci/2012285017
Publié en ligne 30 mai 2012
  1. Orgebin-Crist MC, Danzo BJ, Davies J. Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis. In : Greep R, Hamilton DW, eds. Handbook of physiology-endocrinology V. Baltimore : Williams and Wilkins, 1975 : 319–338.
  2. Bedford JM. Maturation, transport and fate of spermatozoa in the epididymis. In : Greep R, Hamilton DW, eds. Handbook of physiology-endocrinology V. Baltimore : Williams and Wilkins, 1975 : 302–317.
  3. Hinton BT, Palladino MA, Rudolph D, Labus JC. The epididymis as protector of maturing spermatozoa. Reprod Fertil Dev 1995 ; 7 : 731–743. [CrossRef] [PubMed]
  4. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update 2009 ; 15 : 213–227. [CrossRef] [PubMed]
  5. Cornwall GA, von Horsten HH, Swartz D, et al. Extracellular quality control in the epididymis. Asian J Androl 2007 ; 9 : 500–507. [CrossRef] [PubMed]
  6. Gur Y, Breibart H. Protein synthesis in sperm : dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 2008 ; 282 : 45–53. [CrossRef] [PubMed]
  7. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa : comparison with somatic cells. Biol Reprod 1991 ; 44 : 569–574. [CrossRef] [PubMed]
  8. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa : more than the sum of its parts ? DNA, histones, protamines and epigenetics. Reproduction 2010 ; 139 : 287–301. [CrossRef] [PubMed]
  9. Migdal C, Serres M. Espèces oxygénées réactives et stress oxydant. Med Sci (Paris) 2011 ; 27 : 405–412. [CrossRef] [EDP Sciences] [PubMed]
  10. Halliwell B, Gutteridge JM. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1984 ; 1 : 1396–1397. [CrossRef] [PubMed]
  11. Noblanc A, Kocer A, Chabory E, et al. Glutathione peroxidases at work on epididymal spermatozoa : an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J Androl 2011 ; 32 : 641–650. [CrossRef] [PubMed]
  12. Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil 1971 ; 13 : 65–75. [PubMed]
  13. Bedford JM, Calvin HI. Changes in -S-S- linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species. J Exp Zool 1974 ; 187 : 137–156. [CrossRef]
  14. Shalgi R, Seligman J, Kosover NS. Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod 1989 ; 40 : 1037–1045. [CrossRef] [PubMed]
  15. Seligman J, Kosower NS, Weissenberg R, Shalgi R. Thiol-disulfide status of human sperm proteins. J Reprod Fertil 1994 ; 101 : 435–454. [CrossRef] [PubMed]
  16. Balhorn R, Corzett M, Mazrimas J, Watkins B. Identification of bull protamine disulfides. Biochemistry 2001 ; 30 : 175–181. [CrossRef]
  17. Yeung CH, Barfield JP, Cooper TG. Physiological volume regulation by spermatozoa. Mol Cell Endocrinol 2006 ; 250 : 98–105. [CrossRef] [PubMed]
  18. Huang HF, Nieschlag E. Alteration of free sulphydryl content of rat sperm heads by suppression of intratesticular testosterone. J Reprod Fertil 1984 ; 70 : 31–38. [CrossRef] [PubMed]
  19. Golan R, Cooper TG, Oschry Y, et al. Changes in chromatin condensation of human spermatozoa during epididymal transit as determined by flow cytometry. Hum Reprod 1996 ; 11 : 1457–1462. [CrossRef] [PubMed]
  20. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 2006 ; 250 : 70–79. [CrossRef] [PubMed]
  21. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006 ; 41 : 528–540. [CrossRef] [PubMed]
  22. Conrad M, Moreno SG, Sinowatz F, et al. The nuclear form of phospholipids hydroperoxide glutathione is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 2005 ; 25 : 7637–7644. [CrossRef] [PubMed]
  23. Chabory E, Damon C, Lenoir A, et al. Epididymis seleno-independent glutathione peroxidase 5 (GPx5) contributes to the maintenance of sperm DNA integrity. J Clin Invest 2009 ; 119 : 2074–2085. [PubMed]
  24. Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997 ; 68 : 519–524. [CrossRef] [PubMed]
  25. Spano M, Bonde JP, Hjollund HI, et al. Sperm chromatin damage impairs human fertility. The Danish first pregnancy planner study team. Fertil Steril 2000 ; 73 : 43–50. [CrossRef] [PubMed]
  26. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001 ; 75 : 674–677. [CrossRef] [PubMed]
  27. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004 ; 19 : 611–615. [CrossRef] [PubMed]
  28. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 2005 ; 4 : 657–666.
  29. O’Brien J, Zini A. Sperm DNA integrity and male infertility. Urology 2005 ; 65 : 16–22. [CrossRef] [PubMed]
  30. Zini A, Libman J. Sperm DNA damage: importance in the era of assisted reproduction. Curr Opin Urol 2006 ; 16 : 428–434. [CrossRef] [PubMed]
  31. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ 2006 ; 175 : 495–500. [CrossRef] [PubMed]
  32. Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reprod Biomed Online 2006 ; 12 : 715–721. [CrossRef] [PubMed]
  33. Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 2007 ; 33 : 603–621. [CrossRef] [PubMed]
  34. Marchesi DE, Feng HL. Sperm DNA integrity from sperm to egg. J Androl 2007 ; 28 : 481–489. [CrossRef] [PubMed]
  35. Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl 2008 ; 32 : 46–56. [CrossRef] [PubMed]
  36. Aoki VW, Moskovtsev SI, Willis J, et al. DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005 ; 26 : 741–748. [CrossRef] [PubMed]
  37. Sakkas D, Alvarez JG. Sperm DNA fragmentation : mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010 ; 93 : 1027–1036. [CrossRef] [PubMed]
  38. Al Rawi S, Galy V. L’allophagie, ou comment l’embryon élimine les mitochondries et autres organites paternels. Med Sci (Paris) 2012 ; 28 : 343–347. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.