Free Access
Med Sci (Paris)
Volume 28, Number 5, Mai 2012
Page(s) 503 - 511
Section Cellules germinales et infertilité mâle
Published online 30 May 2012
  1. Vincensini L, Blisnick T, Bastin P. 1001 model organisms to study cilia and flagella. Biol Cell 2011 ; 103 : 109–130. [CrossRef] [PubMed] [Google Scholar]
  2. Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011 ; 17 : 524–538. [CrossRef] [PubMed] [Google Scholar]
  3. Holstein AF, Roosen-Runge EC. Atlas of human spermatogenesis. Berlin : Grosse, 1981. [Google Scholar]
  4. Holstein AF, Roosen-Runge EC, Schirren C. IIIustrated pathology of human spermatogenesis. Berlin : Grosse, 1988. [Google Scholar]
  5. Barber CF, Heuser T, Carbajal-Gonzalez BI, et al. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol Biol Cell 2012 ; 23 : 111–120. [CrossRef] [PubMed] [Google Scholar]
  6. Escalier D. The cytoplasmic matrix of the human spermatozoon: cross-filaments link the various cell components. Biol Cell 1984 ; 51 : 347–363. [CrossRef] [PubMed] [Google Scholar]
  7. Escalier D, David G. Pathology of the cytoskeleton of the human sperm flagellum: axonemal and peri-axonemal anomalies. Biol Cell 1984 ; 50 : 37–52. [CrossRef] [PubMed] [Google Scholar]
  8. Baccetti B, Burrini AG, Collodel G, et al. Morphogenesis of the decapitated and decaudated sperm defect in two brothers. Gamete Res 1989 ; 23 : 181–188. [CrossRef] [PubMed] [Google Scholar]
  9. Holstein AF, Schill WB, Breucker H. Dissociated centriole development as a cause of spermatid malformation in man. J Reprod Fertil 1986 ; 78 : 719–725. [CrossRef] [PubMed] [Google Scholar]
  10. Ross A, Christie S, Kerr MG. An electron microscope study of a tail abnormality in spermatozoa from a subfertile man. J Reprod Fertil 1971 ; 24 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  11. Escalier D. Arrest of flagellum morphogenesis with fibrous sheath immaturity of human spermatozoa. Andrologia 2006 ; 38 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  12. Kissel H, Georgescu MM, Larisch S, et al. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 2005 ; 8 : 353–364. [CrossRef] [PubMed] [Google Scholar]
  13. Ihara M, Kinoshita A, Yamada S, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005 ; 8 : 343–352. [CrossRef] [PubMed] [Google Scholar]
  14. Touré A, Lhuillier P, Gossen JA, et al. The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Hum Mol Genet 2007 ; 16 : 1783–1793. [CrossRef] [PubMed] [Google Scholar]
  15. Lhuillier P, Escalier D, Gacon G, Touré A. Un transporteur d’anions est essentiel à la mobilité des spermatozoïdes. Med Sci (Paris) 2008 ; 24 : 226–228. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Kwitny S, Klaus AV, Hunnicutt GR. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod 2010 ; 82 : 669–678. [CrossRef] [PubMed] [Google Scholar]
  17. Lhuillier P, Rode B, Escalier D, et al. Absence of annulus in human asthenozoospermia: case report. Hum Reprod 2009 ; 24 : 1296–1303. [CrossRef] [PubMed] [Google Scholar]
  18. Lhuillier P, Escalier D, Gacon G, et al. Asthénozoospermie humaine et anomalies de l’annulus. Med Sci (Paris) 2010 ; 26 : 688–689. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Sugino Y, Ichioka K, Soda T, et al. Septins as diagnostic markers for a subset of human asthenozoospermia. J Urol 2008 ; 180 : 2706–2709. [CrossRef] [PubMed] [Google Scholar]
  20. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011 ; 103 : 131–144. [CrossRef] [PubMed] [Google Scholar]
  21. Beise N, Trimble W. Septins at a glance. J Cell Sci 2011 ; 124 : 4141–4146. [CrossRef] [PubMed] [Google Scholar]
  22. Afzelius BA, Eliasson R. Flagellar mutants in man: on the heterogeneity of the immotile-cilia syndrome. J Ultrastruct Res 1979 ; 69 : 43–52. [CrossRef] [PubMed] [Google Scholar]
  23. Baccetti B, Burrini AG, Pallini V, Renieri T. Human dynein and sperm pathology. J Cell Biol 1981 ; 88 : 102–107. [CrossRef] [PubMed] [Google Scholar]
  24. Collodel G, Federico MG, Pascarelli NA, et al. A case of severe asthenozoospermia: a novel sperm tail defect of possible genetic origin identified by electron microscopy and immunocytochemistry. Fertil Steril 2011 ; 95 : 289.e11–6. [CrossRef] [Google Scholar]
  25. Escalier D, Serres C. Aberrant distribution of the peri-axonemal structures in the human spermatozoon: possible role of the axoneme in the spatial organization of the flagellar components. Biol Cell 1985 ; 53 : 239–250. [CrossRef] [PubMed] [Google Scholar]
  26. Eddy EM, Toshimori K, O’Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 2003 ; 61 : 103–115. [CrossRef] [PubMed] [Google Scholar]
  27. Escalier D, Albert M. New fibrous sheath anomaly in spermatozoa of men with consanguinity. Fertil Steril 2006 ; 86 : 219 : e1–9. [CrossRef] [PubMed] [Google Scholar]
  28. Afzelius BA. Cilia-related diseases. J Pathol 2004 ; 204 : 470–477. [CrossRef] [PubMed] [Google Scholar]
  29. Becker-Heck A, Zohn IE, Okabe N, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2011 ; 43 : 79–84. [CrossRef] [PubMed] [Google Scholar]
  30. Merveille AC, Davis EE, Becker-Heck A, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 2011 ; 43 : 72–78. [CrossRef] [PubMed] [Google Scholar]
  31. Duquesnoy P, Escudier E, Vincensini L, et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet 2009 ; 85 : 890–896. [CrossRef] [PubMed] [Google Scholar]
  32. Omran H, Kobayashi D, Olbrich H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008 ; 456 : 611–616. [CrossRef] [PubMed] [Google Scholar]
  33. Zhang Z, Zariwala MA, Mahadevan MM, et al. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme. Biol Reprod 2007 ; 77 : 864–871. [CrossRef] [PubMed] [Google Scholar]
  34. Kuo YC, Lin YH, Chen HI, et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat 2012 ; 33 : 710–719. [CrossRef] [PubMed] [Google Scholar]
  35. Zuccarello D, Ferlin A, Garolla A, et al. A possible association of a human tektin-t gene mutation (A229V) with isolated non-syndromic asthenozoospermia: case report. Hum Reprod 2008 ; 23 : 996–1001. [CrossRef] [PubMed] [Google Scholar]
  36. Zuccarello D, Ferlin A, Cazzadore C, et al. Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod 2008 ; 23 : 1957–1962. [CrossRef] [PubMed] [Google Scholar]
  37. Baccetti B, Capitani S, Collodel G, et al. Genetic sperm defects and consanguinity. Hum Reprod 2001 ; 16 : 1365–1371. [CrossRef] [PubMed] [Google Scholar]
  38. Escalier D. Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update 2006 ; 12 : 449–461. [CrossRef] [PubMed] [Google Scholar]
  39. Mitchell V, Rives N, Albert M, et al. Outcome of ICSI with ejaculated spermatozoa in a series of men with distinct ultrastructural flagellar abnormalities. Hum Reprod 2006 ; 21 : 2065–2074. [CrossRef] [PubMed] [Google Scholar]
  40. Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. Septins at the annulus of mammalian sperm. Biol Chem 2011 ; 392 : 799–803. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.