Free Access
Med Sci (Paris)
Volume 28, Mars 2012
Génomique et recherche clinique en oncologie : approches de sciences humaines, économiques et sociales (SHES)
Page(s) 24 - 27
Section M/S Revues
Published online 09 April 2012
  1. EBCTCG. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005 ; 365 : 1687–1717. [CrossRef] [PubMed] [Google Scholar]
  2. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009 ; 360 : 790–800. [CrossRef] [PubMed] [Google Scholar]
  3. Bertucci F, Nasser V, Granjeaud S, et al. Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum Mol Genet 2002 ; 11 : 863–872. [CrossRef] [PubMed] [Google Scholar]
  4. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA 2006 ; 295 : 2492–2502. [Google Scholar]
  5. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003 ; 362 : 362–369. [CrossRef] [PubMed] [Google Scholar]
  6. Hess KR, Anderson K, Symmans WF, et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006 ; 24 : 4236–4244. [CrossRef] [PubMed] [Google Scholar]
  7. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000 ; 406 : 747–752. [CrossRef] [PubMed] [Google Scholar]
  8. Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002 ; 415 : 530–536. [CrossRef] [PubMed] [Google Scholar]
  9. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002 ; 347 : 1999–2009. [CrossRef] [PubMed] [Google Scholar]
  10. Knauer M, Mook S, Rutgers EJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2010 ; 120 : 655–661. [CrossRef] [PubMed] [Google Scholar]
  11. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006 ; 24 : 3726–3734. [CrossRef] [PubMed] [Google Scholar]
  12. Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 2007 ; 8 : 1079–1087. [CrossRef] [PubMed] [Google Scholar]
  13. Lo SS, Mumby PB, Norton J, et al. Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol 2010 ; 28 : 1671–1676. [CrossRef] [PubMed] [Google Scholar]
  14. Oratz R, Paul D, Cohn AL, Sedlacek SM. Impact of a commercial reference laboratory test recurrence score on decision making in early-stage breast cancer. J Oncol Pract 2007 ; 3 : 182–186. [CrossRef] [PubMed] [Google Scholar]
  15. Retel VP, Bueno-de-Mesquita JM, Hummel MJ, et al. Constructive technology assessment (CTA) as a tool in coverage with evidence development: the case of the 70-gene prognosis signature for breast cancer diagnostics. Int J Technol Assess Health Care 2009 ; 25 : 73–83. [CrossRef] [PubMed] [Google Scholar]
  16. Sparano JA, Solin LJ. Defining the clinical utility of gene expression assays in breast cancer: the intersection of science and art in clinical decision making. J Clin Oncol 2010 ; 28 : 1625–1627. [CrossRef] [PubMed] [Google Scholar]
  17. Nielsen LF, Moldrup C. Lay perspective on pharmacogenomics: a litterature review. Personalized Medicine 2006 ; 3 : 311–316. [CrossRef] [PubMed] [Google Scholar]
  18. O’Neill SC, Brewer NT, Lillie SE, et al. Women’s interest in gene expression analysis for breast cancer recurrence risk. J Clin Oncol 2007 ; 25 : 4628–4634. [CrossRef] [PubMed] [Google Scholar]
  19. Richman AR, Tzeng JP, Carey LA, et al. Knowledge of genomic testing among early-stage breast cancer patients. Psychooncology 2011 ; 20 : 28–35. [CrossRef] [PubMed] [Google Scholar]
  20. Tzeng JP, Mayer D, Richman AR, et al. Women’s experiences with genomic testing for breast cancer recurrence risk. Cancer 2010 ; 116 : 1992–2000. [CrossRef] [PubMed] [Google Scholar]
  21. Pellegrini I, Rapti M, Extra JM, et al. Tailored chemotherapy based on tumor gene expression analysis: breast cancer patients misinterpretations and positive attitudes. Eur J Cancer Care 2012 (sous presse). [Google Scholar]
  22. Moldrup C. Ethical, social and legal implications of pharmacogenomics: a critical review. Community Genet 2001 ; 4 : 204–214. [CrossRef] [PubMed] [Google Scholar]
  23. Turnquist DC, Harvey JH, Andersen BL. Attributions and adjustment to life-threatening illness. Br J Clin Psychol 1988 ; 27 : 55–65. [CrossRef] [PubMed] [Google Scholar]
  24. Thorne S, Oliffe J, Kim-Sing C, et al. Helpful communications during the diagnostic period: an interpretive description of patient preferences. Eur J Cancer Care (Engl) 2010 ; 19 : 746–754. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.