Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Mars 2012
Génomique et recherche clinique en oncologie : approches de sciences humaines, économiques et sociales (SHES)
Page(s) 24 - 27
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2012281s107
Publié en ligne 9 avril 2012
  1. EBCTCG. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005 ; 365 : 1687–1717. [CrossRef] [PubMed] [Google Scholar]
  2. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009 ; 360 : 790–800. [CrossRef] [PubMed] [Google Scholar]
  3. Bertucci F, Nasser V, Granjeaud S, et al. Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum Mol Genet 2002 ; 11 : 863–872. [CrossRef] [PubMed] [Google Scholar]
  4. Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA 2006 ; 295 : 2492–2502. [CrossRef] [PubMed] [Google Scholar]
  5. Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003 ; 362 : 362–369. [CrossRef] [PubMed] [Google Scholar]
  6. Hess KR, Anderson K, Symmans WF, et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006 ; 24 : 4236–4244. [CrossRef] [PubMed] [Google Scholar]
  7. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000 ; 406 : 747–752. [CrossRef] [PubMed] [Google Scholar]
  8. Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002 ; 415 : 530–536. [CrossRef] [PubMed] [Google Scholar]
  9. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002 ; 347 : 1999–2009. [CrossRef] [PubMed] [Google Scholar]
  10. Knauer M, Mook S, Rutgers EJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2010 ; 120 : 655–661. [CrossRef] [PubMed] [Google Scholar]
  11. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006 ; 24 : 3726–3734. [CrossRef] [PubMed] [Google Scholar]
  12. Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 2007 ; 8 : 1079–1087. [CrossRef] [PubMed] [Google Scholar]
  13. Lo SS, Mumby PB, Norton J, et al. Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol 2010 ; 28 : 1671–1676. [CrossRef] [PubMed] [Google Scholar]
  14. Oratz R, Paul D, Cohn AL, Sedlacek SM. Impact of a commercial reference laboratory test recurrence score on decision making in early-stage breast cancer. J Oncol Pract 2007 ; 3 : 182–186. [CrossRef] [PubMed] [Google Scholar]
  15. Retel VP, Bueno-de-Mesquita JM, Hummel MJ, et al. Constructive technology assessment (CTA) as a tool in coverage with evidence development: the case of the 70-gene prognosis signature for breast cancer diagnostics. Int J Technol Assess Health Care 2009 ; 25 : 73–83. [CrossRef] [PubMed] [Google Scholar]
  16. Sparano JA, Solin LJ. Defining the clinical utility of gene expression assays in breast cancer: the intersection of science and art in clinical decision making. J Clin Oncol 2010 ; 28 : 1625–1627. [CrossRef] [PubMed] [Google Scholar]
  17. Nielsen LF, Moldrup C. Lay perspective on pharmacogenomics: a litterature review. Personalized Medicine 2006 ; 3 : 311–316. [CrossRef] [PubMed] [Google Scholar]
  18. O’Neill SC, Brewer NT, Lillie SE, et al. Women’s interest in gene expression analysis for breast cancer recurrence risk. J Clin Oncol 2007 ; 25 : 4628–4634. [CrossRef] [PubMed] [Google Scholar]
  19. Richman AR, Tzeng JP, Carey LA, et al. Knowledge of genomic testing among early-stage breast cancer patients. Psychooncology 2011 ; 20 : 28–35. [CrossRef] [PubMed] [Google Scholar]
  20. Tzeng JP, Mayer D, Richman AR, et al. Women’s experiences with genomic testing for breast cancer recurrence risk. Cancer 2010 ; 116 : 1992–2000. [CrossRef] [PubMed] [Google Scholar]
  21. Pellegrini I, Rapti M, Extra JM, et al. Tailored chemotherapy based on tumor gene expression analysis: breast cancer patients misinterpretations and positive attitudes. Eur J Cancer Care 2012 (sous presse). [Google Scholar]
  22. Moldrup C. Ethical, social and legal implications of pharmacogenomics: a critical review. Community Genet 2001 ; 4 : 204–214. [CrossRef] [PubMed] [Google Scholar]
  23. Turnquist DC, Harvey JH, Andersen BL. Attributions and adjustment to life-threatening illness. Br J Clin Psychol 1988 ; 27 : 55–65. [CrossRef] [PubMed] [Google Scholar]
  24. Thorne S, Oliffe J, Kim-Sing C, et al. Helpful communications during the diagnostic period: an interpretive description of patient preferences. Eur J Cancer Care (Engl) 2010 ; 19 : 746–754. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.