Free Access
Issue
Med Sci (Paris)
Volume 28, Number 3, Mars 2012
Page(s) 311 - 315
Section Vieillissement
DOI https://doi.org/10.1051/medsci/2012283020
Published online 06 April 2012
  1. Johnson TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 1990 ; 249 : 908–912. [CrossRef] [PubMed] [Google Scholar]
  2. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  3. Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 ; 299 : 572–574. [CrossRef] [PubMed] [Google Scholar]
  4. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  5. Garofalo RS. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 2002 ; 13 : 156–162. [CrossRef] [PubMed] [Google Scholar]
  6. Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000 ; 290 : 147–150. [CrossRef] [PubMed] [Google Scholar]
  7. Hwangbo DS, Gershman B, Gersham B, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004 ; 429 : 562–566. [CrossRef] [PubMed] [Google Scholar]
  8. Kappeler L, De Magalhaes Filho C, Dupont J, et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 2008 ; 6 : e254. [CrossRef] [PubMed] [Google Scholar]
  9. Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010 ; 11 : 453–465. [CrossRef] [PubMed] [Google Scholar]
  10. McCay CM, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 1935 ; 5 : 155–172. [Google Scholar]
  11. Colman RJ, Anderson RM, Johnson SC, et al. Caloric Restriction delays disease onset and mortality in Rhesus monkeys. Science 2009 ; 325 : 201–204. [CrossRef] [PubMed] [Google Scholar]
  12. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 2008 ; 77 : 727–754. [CrossRef] [PubMed] [Google Scholar]
  13. Piper MDW, Bartke A. Diet and aging. Cell Metab 2008 ; 8 : 99–104. [CrossRef] [PubMed] [Google Scholar]
  14. Panowski SH, Wolff S, Aguilaniu H, et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007 ; 447 : 550–555. [CrossRef] [PubMed] [Google Scholar]
  15. Bonkowski MS, Rocha JS, Masternak MM, et al. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci USA 2006 ; 103 : 7901–7905. [CrossRef] [Google Scholar]
  16. Liao CY, Rikke BA, Johnson TE, et al. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell ; 9 : 92–95. [Google Scholar]
  17. Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 2007 ; 17 : 1646–1656. [CrossRef] [PubMed] [Google Scholar]
  18. Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007 ; 6 : 759–767. [CrossRef] [PubMed] [Google Scholar]
  19. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009 ; 460 : 392–395. [PubMed] [Google Scholar]
  20. Cuervo AM, Wong ES, Martinez-Vicente M. Protein degradation, aggregation, and misfolding. Mov Disord 2010 ; 25 : suppl 1 : S49–S54. [CrossRef] [PubMed] [Google Scholar]
  21. Lopez-Lluch G, Hunt N, Jones B, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006 ; 103 : 1768–1773. [CrossRef] [Google Scholar]
  22. Qiu X, Brown K, Hirschey MD, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010 ; 12 : 662–667. [CrossRef] [PubMed] [Google Scholar]
  23. Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007 ; 447 : 545–549. [CrossRef] [PubMed] [Google Scholar]
  24. Steinkraus KA, Smith ED, Davis C, et al. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 2008 ; 7 : 394–404. [CrossRef] [PubMed] [Google Scholar]
  25. Chen D, Thomas EL, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 2009 ; 5 : e1000486. [CrossRef] [PubMed] [Google Scholar]
  26. Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 1982 ; 215 : 1415–1418. [CrossRef] [PubMed] [Google Scholar]
  27. Solari F, Bourbon-Piffaut A, Masse I, et al. The human tumour suppressor PTEN regulates longevity and dauer formation in Caenorhabditis elegans. Oncogene 2005 ; 24 : 20–27. [CrossRef] [PubMed] [Google Scholar]
  28. Masse I, Molin L, Mouchiroud L, et al. A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. PLoS One 2008 ; 3 : e3354. [CrossRef] [PubMed] [Google Scholar]
  29. Mouchiroud L, Molin L, Kasturi P, et al. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 2011 ; 10 : 39–54. [CrossRef] [PubMed] [Google Scholar]
  30. Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature 2009 ; 458 : 725–731. [CrossRef] [PubMed] [Google Scholar]
  31. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004 ; 7 : 97–110. [CrossRef] [PubMed] [Google Scholar]
  32. Fontana L, Partridge L, Longo VD. Extending healthy life span: from yeast to humans. Science 2010 ; 328 : 321–326. [CrossRef] [PubMed] [Google Scholar]
  33. Mouchiroud L, Molin L, Dalliere N, Solari F. Life span extension by resveratrol, rapamycin, and metformin: the promise of dietary restriction mimetics for an healthy aging. Biofactors 2010 ; 36 : 377–382. [CrossRef] [PubMed] [Google Scholar]
  34. Zask A, Verheijen JC, Richard DJ. Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors: a patent review. Expert Opin Ther Pat 2011 ; 21 : 1109–1127. [CrossRef] [PubMed] [Google Scholar]
  35. Belda-Iniesta C, Pernia O, Simo R. Metformin: a new option in cancer treatment. Clin Transl Oncol 2011 ; 13 : 363–367. [CrossRef] [PubMed] [Google Scholar]
  36. McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 2011 ; 31 : 6587–6594. [CrossRef] [PubMed] [Google Scholar]
  37. Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009 ; 139 : 1157–1169. [CrossRef] [PubMed] [Google Scholar]
  38. Brunet A. Bien vieillir : la voie de signalisation insuline-FOXO et la longévité. Med Sci (Paris) 2012 ; 28 : 316–320. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Pallet N, Beaune P, Thervet E, Legendre C, Anglicheau D. Inhibiteurs des mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Foretz M, Guigas B, Viollet B. Du cancer au traitement du diabète : le suppresseur de tumeur LKB1 comme nouvelle cible pharmacologique. Med Sci (Paris) 2006 ; 22 : 348–350. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.