Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 3, Mars 2012
Page(s) 311 - 315
Section Vieillissement
DOI https://doi.org/10.1051/medsci/2012283020
Publié en ligne 6 avril 2012
  1. Johnson TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 1990 ; 249 : 908–912. [CrossRef] [PubMed] [Google Scholar]
  2. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  3. Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 ; 299 : 572–574. [CrossRef] [PubMed] [Google Scholar]
  4. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  5. Garofalo RS. Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 2002 ; 13 : 156–162. [CrossRef] [PubMed] [Google Scholar]
  6. Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000 ; 290 : 147–150. [CrossRef] [PubMed] [Google Scholar]
  7. Hwangbo DS, Gershman B, Gersham B, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004 ; 429 : 562–566. [CrossRef] [PubMed] [Google Scholar]
  8. Kappeler L, De Magalhaes Filho C, Dupont J, et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 2008 ; 6 : e254. [CrossRef] [PubMed] [Google Scholar]
  9. Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 2010 ; 11 : 453–465. [CrossRef] [PubMed] [Google Scholar]
  10. McCay CM, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 1935 ; 5 : 155–172. [Google Scholar]
  11. Colman RJ, Anderson RM, Johnson SC, et al. Caloric Restriction delays disease onset and mortality in Rhesus monkeys. Science 2009 ; 325 : 201–204. [CrossRef] [PubMed] [Google Scholar]
  12. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 2008 ; 77 : 727–754. [CrossRef] [PubMed] [Google Scholar]
  13. Piper MDW, Bartke A. Diet and aging. Cell Metab 2008 ; 8 : 99–104. [CrossRef] [PubMed] [Google Scholar]
  14. Panowski SH, Wolff S, Aguilaniu H, et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007 ; 447 : 550–555. [CrossRef] [PubMed] [Google Scholar]
  15. Bonkowski MS, Rocha JS, Masternak MM, et al. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci USA 2006 ; 103 : 7901–7905. [CrossRef] [Google Scholar]
  16. Liao CY, Rikke BA, Johnson TE, et al. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell ; 9 : 92–95. [CrossRef] [PubMed] [Google Scholar]
  17. Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 2007 ; 17 : 1646–1656. [CrossRef] [PubMed] [Google Scholar]
  18. Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007 ; 6 : 759–767. [CrossRef] [PubMed] [Google Scholar]
  19. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009 ; 460 : 392–395. [PubMed] [Google Scholar]
  20. Cuervo AM, Wong ES, Martinez-Vicente M. Protein degradation, aggregation, and misfolding. Mov Disord 2010 ; 25 : suppl 1 : S49–S54. [CrossRef] [PubMed] [Google Scholar]
  21. Lopez-Lluch G, Hunt N, Jones B, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006 ; 103 : 1768–1773. [CrossRef] [Google Scholar]
  22. Qiu X, Brown K, Hirschey MD, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010 ; 12 : 662–667. [CrossRef] [PubMed] [Google Scholar]
  23. Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007 ; 447 : 545–549. [CrossRef] [PubMed] [Google Scholar]
  24. Steinkraus KA, Smith ED, Davis C, et al. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 2008 ; 7 : 394–404. [CrossRef] [PubMed] [Google Scholar]
  25. Chen D, Thomas EL, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 2009 ; 5 : e1000486. [CrossRef] [PubMed] [Google Scholar]
  26. Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 1982 ; 215 : 1415–1418. [CrossRef] [PubMed] [Google Scholar]
  27. Solari F, Bourbon-Piffaut A, Masse I, et al. The human tumour suppressor PTEN regulates longevity and dauer formation in Caenorhabditis elegans. Oncogene 2005 ; 24 : 20–27. [CrossRef] [PubMed] [Google Scholar]
  28. Masse I, Molin L, Mouchiroud L, et al. A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. PLoS One 2008 ; 3 : e3354. [CrossRef] [PubMed] [Google Scholar]
  29. Mouchiroud L, Molin L, Kasturi P, et al. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 2011 ; 10 : 39–54. [CrossRef] [PubMed] [Google Scholar]
  30. Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature 2009 ; 458 : 725–731. [CrossRef] [PubMed] [Google Scholar]
  31. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004 ; 7 : 97–110. [CrossRef] [PubMed] [Google Scholar]
  32. Fontana L, Partridge L, Longo VD. Extending healthy life span: from yeast to humans. Science 2010 ; 328 : 321–326. [CrossRef] [PubMed] [Google Scholar]
  33. Mouchiroud L, Molin L, Dalliere N, Solari F. Life span extension by resveratrol, rapamycin, and metformin: the promise of dietary restriction mimetics for an healthy aging. Biofactors 2010 ; 36 : 377–382. [CrossRef] [PubMed] [Google Scholar]
  34. Zask A, Verheijen JC, Richard DJ. Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors: a patent review. Expert Opin Ther Pat 2011 ; 21 : 1109–1127. [CrossRef] [PubMed] [Google Scholar]
  35. Belda-Iniesta C, Pernia O, Simo R. Metformin: a new option in cancer treatment. Clin Transl Oncol 2011 ; 13 : 363–367. [CrossRef] [PubMed] [Google Scholar]
  36. McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 2011 ; 31 : 6587–6594. [CrossRef] [PubMed] [Google Scholar]
  37. Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009 ; 139 : 1157–1169. [CrossRef] [PubMed] [Google Scholar]
  38. Brunet A. Bien vieillir : la voie de signalisation insuline-FOXO et la longévité. Med Sci (Paris) 2012 ; 28 : 316–320. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Pallet N, Beaune P, Thervet E, Legendre C, Anglicheau D. Inhibiteurs des mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Foretz M, Guigas B, Viollet B. Du cancer au traitement du diabète : le suppresseur de tumeur LKB1 comme nouvelle cible pharmacologique. Med Sci (Paris) 2006 ; 22 : 348–350. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.