Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 3, Mars 2012
Page(s) 316 - 320
Section Vieillissement
DOI https://doi.org/10.1051/medsci/2012283021
Publié en ligne 6 avril 2012
  1. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993 ; 366 : 461–464. [CrossRef] [PubMed] [Google Scholar]
  2. Kenyon CJ. The genetics of ageing. Nature 2010 ; 464 : 504–512. [CrossRef] [PubMed] [Google Scholar]
  3. Tatar M, Kopelman A, Epstein D, et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001 ; 292 : 107–110. [CrossRef] [PubMed] [Google Scholar]
  4. Clancy DJ, Gems D, Harshman LG, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001 ; 292 : 104–106. [CrossRef] [PubMed] [Google Scholar]
  5. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182–187. [CrossRef] [PubMed] [Google Scholar]
  6. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 ; 299 : 572–574. [CrossRef] [PubMed] [Google Scholar]
  7. Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009 ; 139 : 1157–1169. [CrossRef] [PubMed] [Google Scholar]
  8. Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 2008 ; 105 : 3438–3442. [CrossRef] [Google Scholar]
  9. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005 ; 24 : 7410–7425. [CrossRef] [PubMed] [Google Scholar]
  10. Brunet A, Park J, Tran H, et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 2001 ; 21 : 952–965. [CrossRef] [PubMed] [Google Scholar]
  11. Kops GJ, de Ruiter ND, De Vries-Smits AM, et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999 ; 398 : 630–634. [CrossRef] [PubMed] [Google Scholar]
  12. Biggs WH, 3rd, Meisenhelder J, Hunter T, et al. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 1999 ; 96 : 7421–7426. [CrossRef] [Google Scholar]
  13. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999 ; 96 : 857–868. [CrossRef] [PubMed] [Google Scholar]
  14. Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002 ; 296 : 530–534. [CrossRef] [PubMed] [Google Scholar]
  15. Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002 ; 419 : 316–321. [CrossRef] [PubMed] [Google Scholar]
  16. Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000 ; 404 : 782–787. [CrossRef] [PubMed] [Google Scholar]
  17. Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002 ; 295 : 2450–2452. [CrossRef] [PubMed] [Google Scholar]
  18. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003 ; 424 : 277–283. [CrossRef] [PubMed] [Google Scholar]
  19. Calnan DR, Brunet A. The FoxO code. Oncogene 2008 ; 27 : 2276–2288. [CrossRef] [PubMed] [Google Scholar]
  20. Greer EL, Oskoui PR, Banko MR, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007 ; 282 : 30107–30119. [CrossRef] [PubMed] [Google Scholar]
  21. Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 2007 ; 17 : 1646–1656. [CrossRef] [PubMed] [Google Scholar]
  22. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004 ; 303 : 2011–2015. [CrossRef] [PubMed] [Google Scholar]
  23. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004 ; 116 : 551–563. [CrossRef] [PubMed] [Google Scholar]
  24. Aoki M, Jiang H, Vogt PK. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 2004 ; 101 : 13613–13617. [CrossRef] [Google Scholar]
  25. Renault VM, Thekkat PU, Hoang KL, et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene 2011 ; 30 : 3207–3221. [CrossRef] [PubMed] [Google Scholar]
  26. Hwangbo DS, Gershman B, Tu MP, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004 ; 429 : 562–566. [CrossRef] [PubMed] [Google Scholar]
  27. Giannakou ME, Goss M, Junger MA, et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004 ; 305 : 361. [CrossRef] [PubMed] [Google Scholar]
  28. Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 2001 ; 11 : 1975–1980. [CrossRef] [PubMed] [Google Scholar]
  29. Willcox BJ, Donlon TA, He Q, et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008 ; 105 : 13987–13992. [CrossRef] [Google Scholar]
  30. Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 2009 ; 8 : 460–472. [CrossRef] [PubMed] [Google Scholar]
  31. Flachsbart F, Caliebe A, Kleindorp R, et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 2009 ; 106 : 2700–2705. [CrossRef] [Google Scholar]
  32. Anselmi CV, Malovini A, Roncarati R, et al. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 2009 ; 12 : 95–104. [CrossRef] [PubMed] [Google Scholar]
  33. Li Y, Wang WJ, Cao H, et al. Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 2009 ; 18 : 4897–4904. [CrossRef] [PubMed] [Google Scholar]
  34. Renault VM, Rafalski VA, Morgan AA, et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 2009 ; 5 : 527–539. [CrossRef] [PubMed] [Google Scholar]
  35. Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007 ; 1 : 140–152. [CrossRef] [PubMed] [Google Scholar]
  36. Paik JH, Ding Z, Narurkar R, et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 2009 ; 5 : 540–553. [CrossRef] [PubMed] [Google Scholar]
  37. Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007 ; 1 : 101–112. [CrossRef] [PubMed] [Google Scholar]
  38. Zhang X, Yalcin S, Lee DF, et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol 2011 ; 13 : 1092–1099. [CrossRef] [PubMed] [Google Scholar]
  39. Brunet A. Les multiples actions des facteurs de transcription Foxo. Med Sci (Paris) 2004 ; 20 : 856–859. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Holzenberger M. Les récepteurs centraux de l’IGF-1 contôlent la longévité chez la souris. Med Sci (Paris) 2009 ; 25 : 371–376. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Tothova Z, Mercher T. FoxO : stress vie éternelle. Med Sci (Paris) 2007 ; 23 : 466–467. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Rimmelé P, Zhang Y, Ghaffari S. Rôle des facteurs de transcription FoxO dans la maintenance des cellules souches. Med Sci (Paris) 2012 ; 28 : 250–254. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.