Free Access
Issue
Med Sci (Paris)
Volume 27, Number 11, Novembre 2011
Page(s) 987 - 992
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112711015
Published online 30 November 2011
  1. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001 ; 81 : 741–766. [PubMed] [Google Scholar]
  2. Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010 ; 330 : 1774. [CrossRef] [PubMed] [Google Scholar]
  3. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000 ; 106 : 1489–1499. [CrossRef] [PubMed] [Google Scholar]
  4. Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003 ; 9 : 907–913. [CrossRef] [PubMed] [Google Scholar]
  5. Helmer C, Pasquier F. Dartigues JF. Épidémiologie de la maladie d’Alzheimer et des syndromes apparentés Med Sci (Paris) 2006 ; 22 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007 ; 6 : 650–661. [CrossRef] [PubMed] [Google Scholar]
  7. Candela P, Gosselet F, Miller F, et al. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 2008 ; 15 : 254–264. [CrossRef] [PubMed] [Google Scholar]
  8. Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 2006 ; 112 : 405–415. [CrossRef] [PubMed] [Google Scholar]
  9. Yamada K, Hashimoto T, Yabuki C, et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. J Biol Chem 2008 ; 283 : 34554–34562. [CrossRef] [PubMed] [Google Scholar]
  10. Ito S, Ohtsuki S, Terasaki T. Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1–40) across the rat blood-brain barrier. Neurosci Res 2006 ; 56 : 246–252. [CrossRef] [PubMed] [Google Scholar]
  11. Ito S, Ueno T, Ohtsuki S, et al. Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-beta peptide(1–40) in mouse: involvement of an LRP-1-independent pathway. J Neurochem 2010 ; 113 : 1356–1363. [PubMed] [Google Scholar]
  12. Pflanzner T, Janko MC, Andre-Dohmen B, et al. LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging 2010 ; 12 juillet. DOI: 10.16/j.neurobiolaging.2010.05.025. [Google Scholar]
  13. Eisele YS, Obermuller U, Heilbronner G, et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 2010 ; 330 : 980–982. [CrossRef] [PubMed] [Google Scholar]
  14. Sutcliffe JG, Hedlund PB, Thomas EA, et al. Peripheral reduction of beta-amyloid is sufficient to reduce brain beta-amyloid: implications for Alzheimer’s disease. J Neurosci Res 2011 ; 89 : 808–814. [CrossRef] [PubMed] [Google Scholar]
  15. Jeynes B, Provias J. Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Curr Alzheimer Res 2008 ; 5 : 432–437. [CrossRef] [PubMed] [Google Scholar]
  16. Candela P, Gosselet F, Saint-Pol J, et al. Apical-to-basolateral transport of amyloid-beta peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 2010 ; 22 : 849–859. [PubMed] [Google Scholar]
  17. Sabbagh MN, Agro A, Bell J, et al. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord 2011 ; 25 : 206–212. [CrossRef] [PubMed] [Google Scholar]
  18. Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005 ; 115 : 3285–3290. [CrossRef] [PubMed] [Google Scholar]
  19. Vogelgesang S, Warzok RW, Cascorbi I, et al. The role of P-glycoprotein in cerebral amyloid angiopathy : implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2004 ; 1 : 121–125. [CrossRef] [PubMed] [Google Scholar]
  20. Gao W, Eisenhauer PB, Conn K, et al. Insulin degrading enzyme is expressed in the human cerebrovascular endothelium and in cultured human cerebrovascular endothelial cells. Neurosci Lett 2004 ; 371 : 6–11. [CrossRef] [PubMed] [Google Scholar]
  21. Lynch JA, George AM, Eisenhauer PB, et al. Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. J Neurosci Res 2006 ; 83 : 1262–1270. [CrossRef] [PubMed] [Google Scholar]
  22. Carpentier M, Robitaille Y, DesGroseillers L, et al. Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002 ; 61 : 849–856. [PubMed] [Google Scholar]
  23. Gosselet F, Candela P, Sevin E, et al. Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier: use of an in vitro model. Brain Res 2009 ; 1249 : 34–42. [CrossRef] [PubMed] [Google Scholar]
  24. Urmoneit B, Prikulis I, Wihl G, et al. Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy. Lab Invest 1997 ; 77 : 157–166. [PubMed] [Google Scholar]
  25. Bell RD, Deane R, Chow N, et al. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 2009 ; 11 : 143–153. [CrossRef] [PubMed] [Google Scholar]
  26. Bowman GL, Kaye JA, Moore M, et al. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 2007 ; 68 : 1809–1814. [CrossRef] [PubMed] [Google Scholar]
  27. Ujiie M, Dickstein DL, Carlow DA, et al. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003 ; 10 : 463–470. [PubMed] [Google Scholar]
  28. Tai LM, Holloway KA, Male DK, et al. Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med 2010 ; 14 : 1101–1112. [PubMed] [Google Scholar]
  29. Marco S, Skaper SD. Amyloid beta-peptide1–42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett 2006 ; 401 : 219–224. [CrossRef] [PubMed] [Google Scholar]
  30. Carrano A, Hoozemans JJ, van der Vies SM, et al. Amyloid beta Induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 2011 ; 15 : 1167–1178. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  31. Hémar A, Mulle C. Maladie d’Alzheimer, peptide β-amyloïde et synapses. Med Sci (Paris) 2011 ; 27 : 733–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Clavaguera F, Goedert M, Tolnay M. Induction et propagation de la pathologie par la protéine tau chez un modèle murin de la maladie d’Alzheimer. Med Sci (Paris) 2010 ; 26 : 121–124. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.