Free Access
Med Sci (Paris)
Volume 27, Number 11, Novembre 2011
Page(s) 953 - 958
Section M/S Revues
Published online 30 November 2011
  1. Backhed F, Ley R, Sonnenburg J, et al. Host-bacterial mutualism in the human intestine. Science 2005 ; 307 : 1915–1920. [CrossRef] [PubMed] [Google Scholar]
  2. Ley R, Peterson D, Gordon J. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006 ; 124 : 837–848. [CrossRef] [PubMed] [Google Scholar]
  3. Swynghedauw B. L’évolution biologique : grande oubliée de l’enseignement médical et base rationnelle d’une politique de santé. Med Sci (Paris) 2010 ; 26 : 526–528. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 2000 ; 15 : 321–326. [Google Scholar]
  5. Hilgenboecker K, Hammerstein P, Schlattmann P, et al. How many species are infected with Wolbachia? A statistical analysis of current data. Fems Microbiol Lett 2008 ; 281 : 215–220. [CrossRef] [PubMed] [Google Scholar]
  6. Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 2005 ; 59 : 155–189. [CrossRef] [PubMed] [Google Scholar]
  7. Engelstädter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 2009 ; 40 : 127–149. [Google Scholar]
  8. Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. Trends Microbiol 2009 ; 17 : 348–354. [Google Scholar]
  9. Aksoy S. Tsetse: a haven for microorganisms. Parasitol Today 2000 ; 16 : 114–118. [Google Scholar]
  10. Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 2005 ; 60 : 245–284. [CrossRef] [PubMed] [Google Scholar]
  11. Langworthy NG, Renz A, Mackenstedt U, et al. Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc R S Lond S B Biol Sci 2000 ; 267 : 1063–1069. [CrossRef] [Google Scholar]
  12. Foster J, Ganatra M, Kamal I, et al. The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005 ; 3 : e121. [CrossRef] [PubMed] [Google Scholar]
  13. Sironi M, Bandi C, Sacchi L, et al. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 1995 ; 74 : 223–227. [CrossRef] [PubMed] [Google Scholar]
  14. Saint Andre AV, Blackwell NM, Hall LR, et al. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 2002 ; 295 : 1892–1895. [CrossRef] [PubMed] [Google Scholar]
  15. Taylor MJ, Makunde WH, McGarry HF, et al. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-control led trial. Lancet 2005 ; 365 : 2116–2121. [CrossRef] [PubMed] [Google Scholar]
  16. Hoerauf A, Specht S, Buttner M, et al. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol 2008 ; 197 : 295–311. [CrossRef] [PubMed] [Google Scholar]
  17. Debrah A, Mand S, Marfo-Debrekyei Y, et al. Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop Med Int Health 2007 ; 12 : 1433–1441. [Google Scholar]
  18. Taylor M, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet 2010 ; 376 : 1175–1185. [Google Scholar]
  19. Moran NA, Degnan PH, Santos SR, et al. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 2005 ; 102 : 16919–16926. [CrossRef] [Google Scholar]
  20. Oliver KM, Degnan PH, Hunter MS, Moran NS. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 2009 ; 325 : 992–994. [CrossRef] [PubMed] [Google Scholar]
  21. Zouache K, Voronin D, Tran-Van V, et al. Persistent Wolbachia and cultivable bacteria infection in the reproductive, somatic tissues of the mosquito vector Aedes albopictus. PLoS One 2009 ; 4 : e6388. [Google Scholar]
  22. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009 ; 139 : 1268–1278. [CrossRef] [PubMed] [Google Scholar]
  23. Wang JW, Wu YN, Yang GX, Aksoy S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci USA 2009 ; 106 : 12133–12138. [CrossRef] [Google Scholar]
  24. McMeniman CJ, Lane RV, Cass BN, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009 ; 323 : 141–144. [CrossRef] [PubMed] [Google Scholar]
  25. Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009 ; 326 : 134–136. [Google Scholar]
  26. Bian G, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 2010 ; 6 : e1000833. [Google Scholar]
  27. Bourtzis K, Pettigrew MM, O’Neill SL. Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 2000 ; 9 : 635–639. [CrossRef] [PubMed] [Google Scholar]
  28. Mousson L, Martin E, Zouache K, et al. Wolbachia modulates Chikungunya replication in Aedes albopictus. Mol Ecol 2010 ; 19 : 1953–1964. [CrossRef] [PubMed] [Google Scholar]
  29. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008 ; 6 : e1000002. [CrossRef] [Google Scholar]
  30. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science 2008 ; 322 : 702. [CrossRef] [PubMed] [Google Scholar]
  31. Glaser R, Meola M. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 2010 ; 5 : e11977. [Google Scholar]
  32. Lanteri MC, Assal A, Norris PJ, Busch MP. Le virus West Nile. I. La conquête de l’Ouest. Med Sci (Paris) 2011 ; 27 : 375–381. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Lanteri MC, Diamond MS, Norris PJ, Busch MP. Infection par le virus West Nile chez l’homme. II. Aspects physiopathologiques et réponses immunitaires. Med Sci (Paris) 2011 ; 27 : 382–386. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Martinez J. Wolbachia: une nouvelle arme dans la lutte contre le virus de la dengue. Med Sci (Paris) 2011 ; 27 : 947. [Google Scholar]
  35. Kremer N, Charif D, Henri H, et al. A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity 2009 ; 103 : 248–256. [CrossRef] [PubMed] [Google Scholar]
  36. Favia G, Ricci I, Damiani C, et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 2007 ; 104 : 9047–9051. [CrossRef] [Google Scholar]
  37. Klassen W, Curtis C. History of the sterile insect technique. In : Dyck VA, Hendrichs J, Robinson AS, eds. Sterile insect technique. Principles and practice in area-wide integrated pest management. Dordrecht : Springer, 2005 : 3–31. [Google Scholar]
  38. Laven H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 1967 ; 216 : 383–384. [CrossRef] [PubMed] [Google Scholar]
  39. Zabalou S, Riegler M, Theodorakopoulou M, et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 2004 ; 101 : 15042–15045. [CrossRef] [Google Scholar]
  40. Brelsfoard C, St Clair W, Dobson S. Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasit Vectors 2009 ; 2 : 38. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.