Free Access
Issue
Med Sci (Paris)
Volume 27, Number 10, Octobre 2011
Page(s) 859 - 865
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112710014
Published online 21 October 2011
  1. Badinter E., L’un est l’autre : des relations entre hommes et femmes. Collection Points. Paris: Odile Jacob 1986. [Google Scholar]
  2. Aristote. De la génération des animaux. Livre IV. Paris : Les Belles Lettres, 1963. [Google Scholar]
  3. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 1959 ; 183 : 302–303. [CrossRef] [PubMed] [Google Scholar]
  4. Russell LB. Genetics of mammalian sex chromosomes. Science 1961 ; 133 : 1795–1803. [CrossRef] [PubMed] [Google Scholar]
  5. Jost A. Recherches sur le contrôle hormonal de l’organogenèse sexuelle du lapin et remarques sur certaines malformations de l’appareil génital humain. Gyn Obstet 1950 ; 49 : 44–60. [Google Scholar]
  6. Uhlenhaut N, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009 ; 139 : 1130–1142. [CrossRef] [PubMed] [Google Scholar]
  7. Pannetier M, Pailhoux E. FOXL2, le gardien de l’identité ovarienne. Med Sci (Paris) 2010 ; 26 : 470–473. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993 ; 74 : 679–691. [CrossRef] [PubMed] [Google Scholar]
  9. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994 ; 77: 481–490. [CrossRef] [PubMed] [Google Scholar]
  10. Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 2004 ; 5 : 509–521. [CrossRef] [PubMed] [Google Scholar]
  11. Capel B. The battle of the sexes. Mech Dev 2000 ; 92 : 89–103. [CrossRef] [PubMed] [Google Scholar]
  12. Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008 ; 453 : 930–934. [CrossRef] [PubMed] [Google Scholar]
  13. Brennan J, Karl J, Capel B. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 2002 ; 244 : 418–428. [CrossRef] [PubMed] [Google Scholar]
  14. Combes AN, Wilhelm D, Davidson T, et al. Endothelial cell migration directs testis cord formation. Dev Biol 2009 ; 326 : 112–120. [CrossRef] [PubMed] [Google Scholar]
  15. Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 2008 ; 23 : 589–599. [CrossRef] [PubMed] [Google Scholar]
  16. Pannetier M, Fabre S, Batista F, et al. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 2006 ; 36 : 399–413. [CrossRef] [PubMed] [Google Scholar]
  17. George FW, Wilson JD. Conversion of androgen to estrogen by the human fetal ovary. J Clin Endocrinol Metab 1978 ; 47 : 550–555. [CrossRef] [PubMed] [Google Scholar]
  18. Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990 ; 343 : 774–778. [CrossRef] [PubMed] [Google Scholar]
  19. Pelletier J, Bruening W, Li F, et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 1991 ; 353 : 431–434. [CrossRef] [PubMed] [Google Scholar]
  20. Foster J, Dominguez-Steglich M, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994 ; 372 : 525–530. [CrossRef] [PubMed] [Google Scholar]
  21. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994 ; 79 : 1111–1120. [CrossRef] [PubMed] [Google Scholar]
  22. Chaboissier M, Kobayashi A, Vidal V, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 2004 ; 131 : 1891–1901. [CrossRef] [PubMed] [Google Scholar]
  23. Lavery R, Lardenois A, Ranc-Jianmotamedi F, et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 2011 ; 354 : 111–122. [CrossRef] [PubMed] [Google Scholar]
  24. Hammes A, Guo JK, Lutsch G, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001 ; 106 : 319–329. [CrossRef] [PubMed] [Google Scholar]
  25. Raymond CS, Parker ED, Kettlewell JR, et al. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 1999 ; 8 : 989–996. [CrossRef] [PubMed] [Google Scholar]
  26. Ottolenghi C, Veitia R, Quintana-Murci L, et al. The region on 9p associated with 46, XY sex reversal contains several transcripts expressed in the urogenital system and a novel doublesex-related domain. Genomics 2000 ; 64 : 170–178. [CrossRef] [PubMed] [Google Scholar]
  27. Raymond CS, Murphy MW, O’Sullivan MG, et al. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 2000 ; 14 : 2587–2595. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  28. Ottolenghi C, McElreavey K. Deletions of 9p and the quest for a conserved mechanism of sex determination. Mol Genet Metab 2000 ; 71 : 397–404. [CrossRef] [PubMed] [Google Scholar]
  29. Koopman P. Sex determination: the power of DMRT1. Trends Genet 2009 ; 25 : 479–481. [CrossRef] [PubMed] [Google Scholar]
  30. Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994 ; 372 : 635–641. [CrossRef] [PubMed] [Google Scholar]
  31. Swain A, Narvaez V, Burgoyne P, et al. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998 ; 391 : 761–767. [CrossRef] [PubMed] [Google Scholar]
  32. Yu RN, Ito M, Saunders TL, et al. Role of Ahch in gonadal development and gametogenesis. Nat Genet 1998 ; 20 : 353–357. [CrossRef] [PubMed] [Google Scholar]
  33. Pailhoux E, Vigier B, Chaffaux S, et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 2001 ; 29 : 453–458. [CrossRef] [PubMed] [Google Scholar]
  34. Pannetier M, Elzaiat M, Thépot D, et al. Telling the story of XX sex-reversal in the goat: highlighting the sex-crossroad in domestic mammals. Sex Dev 2011 (sous presse). [Google Scholar]
  35. Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001 ; 27 : 159–166. [CrossRef] [PubMed] [Google Scholar]
  36. Schmidt D, Ovitt C, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004 ; 131 : 933–942. [CrossRef] [PubMed] [Google Scholar]
  37. Jordan B. Du bon usage des exomes. Med Sci (Paris) 2010 ; 26 : 1111–1113. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Matson CK, Murphy MW, Sarver AL, et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 2011 ; 476 : 101–104. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.