Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 10, Octobre 2011
Page(s) 859 - 865
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20112710014
Publié en ligne 21 octobre 2011
  1. Badinter E., L’un est l’autre : des relations entre hommes et femmes. Collection Points. Paris: Odile Jacob 1986.
  2. Aristote. De la génération des animaux. Livre IV. Paris : Les Belles Lettres, 1963.
  3. Jacobs PA, Strong JA. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 1959 ; 183 : 302–303. [CrossRef] [PubMed]
  4. Russell LB. Genetics of mammalian sex chromosomes. Science 1961 ; 133 : 1795–1803. [CrossRef] [PubMed]
  5. Jost A. Recherches sur le contrôle hormonal de l’organogenèse sexuelle du lapin et remarques sur certaines malformations de l’appareil génital humain. Gyn Obstet 1950 ; 49 : 44–60.
  6. Uhlenhaut N, Jakob S, Anlag K, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009 ; 139 : 1130–1142. [CrossRef] [PubMed]
  7. Pannetier M, Pailhoux E. FOXL2, le gardien de l’identité ovarienne. Med Sci (Paris) 2010 ; 26 : 470–473. [CrossRef] [EDP Sciences] [PubMed]
  8. Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell 1993 ; 74 : 679–691. [CrossRef] [PubMed]
  9. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994 ; 77: 481–490. [CrossRef] [PubMed]
  10. Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 2004 ; 5 : 509–521. [CrossRef] [PubMed]
  11. Capel B. The battle of the sexes. Mech Dev 2000 ; 92 : 89–103. [CrossRef] [PubMed]
  12. Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008 ; 453 : 930–934. [CrossRef] [PubMed]
  13. Brennan J, Karl J, Capel B. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 2002 ; 244 : 418–428. [CrossRef] [PubMed]
  14. Combes AN, Wilhelm D, Davidson T, et al. Endothelial cell migration directs testis cord formation. Dev Biol 2009 ; 326 : 112–120. [CrossRef] [PubMed]
  15. Kerr CL, Hill CM, Blumenthal PD, Gearhart JD. Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 2008 ; 23 : 589–599. [CrossRef] [PubMed]
  16. Pannetier M, Fabre S, Batista F, et al. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 2006 ; 36 : 399–413. [CrossRef] [PubMed]
  17. George FW, Wilson JD. Conversion of androgen to estrogen by the human fetal ovary. J Clin Endocrinol Metab 1978 ; 47 : 550–555. [CrossRef] [PubMed]
  18. Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990 ; 343 : 774–778. [CrossRef] [PubMed]
  19. Pelletier J, Bruening W, Li F, et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 1991 ; 353 : 431–434. [CrossRef] [PubMed]
  20. Foster J, Dominguez-Steglich M, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994 ; 372 : 525–530. [CrossRef] [PubMed]
  21. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994 ; 79 : 1111–1120. [CrossRef] [PubMed]
  22. Chaboissier M, Kobayashi A, Vidal V, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 2004 ; 131 : 1891–1901. [CrossRef] [PubMed]
  23. Lavery R, Lardenois A, Ranc-Jianmotamedi F, et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 2011 ; 354 : 111–122. [CrossRef] [PubMed]
  24. Hammes A, Guo JK, Lutsch G, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001 ; 106 : 319–329. [CrossRef] [PubMed]
  25. Raymond CS, Parker ED, Kettlewell JR, et al. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 1999 ; 8 : 989–996. [CrossRef] [PubMed]
  26. Ottolenghi C, Veitia R, Quintana-Murci L, et al. The region on 9p associated with 46, XY sex reversal contains several transcripts expressed in the urogenital system and a novel doublesex-related domain. Genomics 2000 ; 64 : 170–178. [CrossRef] [PubMed]
  27. Raymond CS, Murphy MW, O’Sullivan MG, et al. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 2000 ; 14 : 2587–2595. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  28. Ottolenghi C, McElreavey K. Deletions of 9p and the quest for a conserved mechanism of sex determination. Mol Genet Metab 2000 ; 71 : 397–404. [CrossRef] [PubMed]
  29. Koopman P. Sex determination: the power of DMRT1. Trends Genet 2009 ; 25 : 479–481. [CrossRef] [PubMed]
  30. Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994 ; 372 : 635–641. [CrossRef] [PubMed]
  31. Swain A, Narvaez V, Burgoyne P, et al. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998 ; 391 : 761–767. [CrossRef] [PubMed]
  32. Yu RN, Ito M, Saunders TL, et al. Role of Ahch in gonadal development and gametogenesis. Nat Genet 1998 ; 20 : 353–357. [CrossRef] [PubMed]
  33. Pailhoux E, Vigier B, Chaffaux S, et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 2001 ; 29 : 453–458. [CrossRef] [PubMed]
  34. Pannetier M, Elzaiat M, Thépot D, et al. Telling the story of XX sex-reversal in the goat: highlighting the sex-crossroad in domestic mammals. Sex Dev 2011 (sous presse).
  35. Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001 ; 27 : 159–166. [CrossRef] [PubMed]
  36. Schmidt D, Ovitt C, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004 ; 131 : 933–942. [CrossRef] [PubMed]
  37. Jordan B. Du bon usage des exomes. Med Sci (Paris) 2010 ; 26 : 1111–1113. [CrossRef] [EDP Sciences] [PubMed]
  38. Matson CK, Murphy MW, Sarver AL, et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 2011 ; 476 : 101–104. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.