Free Access
Med Sci (Paris)
Volume 27, Number 8-9, Août–Septembre 2011
Page(s) 725 - 732
Section M/S Revues
Published online 31 August 2011
  1. Ray-Gallet D, Gérard A, Polo S, Almouzni G. Variations sur le thème du « code histone ». Med Sci (Paris) 2005 ; 21 : 384-389. [Google Scholar]
  2. Kouzarides T. Chromatin modifications and their function. Cell 2007 ; 128 : 693-705. [CrossRef] [PubMed] [Google Scholar]
  3. Mottet D, Castronovo V. Les histone désacétylases. Nouvelles cibles pour les thérapies anti-cancéreuses. Med Sci (Paris) 2008 ; 24 : 742-6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Sowa Y. Development of HDAC inhibitors. Gan To Kagaku Ryoho 2010 ; 37 : 1665-1668. [PubMed] [Google Scholar]
  5. Albert M, Helin K. Histone methyltransferases in cancer. Sem Cell Dev Biol 2010 ; 21 : 209-220. [CrossRef] [Google Scholar]
  6. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev 2002 ; 12 : 198-209. [CrossRef] [PubMed] [Google Scholar]
  7. Schneider R, Bannister AJ, Kouzarides T. Unsafe SET: histone lysine methyltransferases and cancer. Trends Biochem Sci 2002 ; 27 : 396-402. [CrossRef] [PubMed] [Google Scholar]
  8. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001 ; 107 : 323-337. [CrossRef] [PubMed] [Google Scholar]
  9. Czvitkovich S, Sauer S, Peters AH, et al. Over-expression of the SUV39H1 histone methyltransferase induces altered proliferation and differentiation in transgenic mice. Mech Dev 2001 ; 107 : 141-153. [CrossRef] [PubMed] [Google Scholar]
  10. Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001 ; 412 : 561-565. [CrossRef] [PubMed] [Google Scholar]
  11. Owa T, Yoshino H, Yoshimatsu K, Nagasu T. Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 2001 ; 8 : 1487-1503. [PubMed] [Google Scholar]
  12. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem 2008 ; 105 : 344-352. [CrossRef] [PubMed] [Google Scholar]
  13. Carbone R, Botrugno OA, Ronzoni S, et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 2006 ; 26 : 1288-1296. [CrossRef] [PubMed] [Google Scholar]
  14. Goyama S, Nitta E, Yoshino T, et al. EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization. Leukemia 2010 ; 24 : 81-88. [CrossRef] [PubMed] [Google Scholar]
  15. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007 ; 7 : 823-833. [CrossRef] [PubMed] [Google Scholar]
  16. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001 ; 20 : 5695-5707. [CrossRef] [PubMed] [Google Scholar]
  17. Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003 ; 17 : 2298-2307. [CrossRef] [PubMed] [Google Scholar]
  18. Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005 ; 121 : 167-178. [CrossRef] [PubMed] [Google Scholar]
  19. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007 ; 21 : 525-530. [CrossRef] [PubMed] [Google Scholar]
  20. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002 ; 419 : 624-629. [CrossRef] [PubMed] [Google Scholar]
  21. Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell 2005 ; 18 : 263-272. [Google Scholar]
  22. Cheung N, Chan LC, Thompson A, et al. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007 ; 9 : 1208-1215. [CrossRef] [PubMed] [Google Scholar]
  23. Majumder S, Liu Y, Ford OH, et al. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. The Prostate 2006 ; 66 : 1292-1301. [CrossRef] [PubMed] [Google Scholar]
  24. Greiner D, Bonaldi T, Eskeland R, et al. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 2005 ; 1 : 143-145. [CrossRef] [PubMed] [Google Scholar]
  25. Cook KM, Hilton ST, Mecinovic J, et al. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem 2009 ; 284 : 26831-26838. [CrossRef] [PubMed] [Google Scholar]
  26. Isham CR, Tibodeau JD, Jin W, et al. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2007 ; 109 : 2579-2588. [CrossRef] [PubMed] [Google Scholar]
  27. Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007 ; 21 : 1050-1063. [CrossRef] [PubMed] [Google Scholar]
  28. Kubicek S, O’Sullivan RJ, August EM, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007 ; 25 : 473-481. [CrossRef] [PubMed] [Google Scholar]
  29. Cheng D, Yadav N, King RW, et al. Small molecule regulators of protein arginine methyltransferases. J Biol Chem 2004 ; 279 : 23892-23899. [CrossRef] [PubMed] [Google Scholar]
  30. Spannhoff A, Machmur R, Heinke R, et al. A novel arginine methyltransferase inhibitor with cellular activity. Bioorg Med Chem Lett 2007 ; 17 : 4150-4153. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.