Imagerie et cognition
Free Access
Med Sci (Paris)
Volume 27, Number 6-7, Juin–Juillet 2011
Imagerie et cognition
Page(s) 639 - 650
Section M/S Revues
Published online 01 July 2011
  1. Cachia A, Paillère-Martinot ML, Galinowski A, et al. Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. Neuroimage 2008 ; 39 : 927-935. [CrossRef] [PubMed] [Google Scholar]
  2. Paillère-Martinot M, Caclin A, Artiges E, et al. Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Shizophr res 2001 ; 50 : 19-26. [CrossRef] [Google Scholar]
  3. Penttilä J, Paillère-Martinot ML, Martinot JL, et al. Global and temporal cortical folding in patients with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 2008 ; 47 : 1125-1132. [CrossRef] [PubMed] [Google Scholar]
  4. Wright IC, Rabe-hesketh S, Woodruff P, et al. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000 ; 157 : 16-25. [PubMed] [Google Scholar]
  5. Thompson PM, Vidal C, Giedd JN, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001 ; 98 : 11650-11655. [CrossRef] [Google Scholar]
  6. Vidal CN, Rapoport JL, Hayashi KM, et al. Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch Gen Psychiatry 2006 ; 63 : 25-34. [CrossRef] [PubMed] [Google Scholar]
  7. Artiges E, Martinot JL, Verdys M, et al. Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophr Bull 2000 ; 26 : 709-721. [PubMed] [Google Scholar]
  8. Dehaene S, Artiges E, Naccache L, et al. Conscious and subliminal conflicts in normal subjects and patients with schizophrenia: the role of the anterior cingulate. Proc Natl Acad Sci USA 2003 ; 100 : 13722-13727. [CrossRef] [Google Scholar]
  9. Huret JD, Mazoyer BM, Lesur A, et al. Cortical metabolic patterns in schizophrenia: a mismatch with the positive-negative paradigm. European Psychiatry 1991 ; 6 : 7-19. [Google Scholar]
  10. Silbersweig DA, Stern E, Frith CD, et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995 ; 378 : 176-179. [CrossRef] [PubMed] [Google Scholar]
  11. Weiss AP, Heckers S. Neuroimaging of hallucinations: a review of the literature. Psychiatry Res 1999 ; 92 : 61-74. [CrossRef] [PubMed] [Google Scholar]
  12. Plaze M, Paillère-Martinot ML, Penttilä J, et al. «Where do auditory hallucinations come from?»–A brain morphometry study of pchizophrenia patients with inner or outer space hallucinations. Schizophr Bull 2011 ; 37 : 212-221. [CrossRef] [PubMed] [Google Scholar]
  13. Zhang Z, Shi J, Yuan Y, et al. Relationship of auditory verbal hallucinations with cerebral asymmetry in patients with schizophrenia: an event-related fMRI study. J Psychiatr Res 2008 ; 42 : 477-486. [CrossRef] [PubMed] [Google Scholar]
  14. Hubl D, Koenig T, Strik W, et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 2004 ; 61 : 658-668. [CrossRef] [PubMed] [Google Scholar]
  15. Hoffman RE, Hawkins KA, Gueorguieva R, et al. Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch GenPsychiatry 2003 ; 60 : 49-56. [CrossRef] [Google Scholar]
  16. Aleman A, Sommer IE, Kahn RS. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. J Clin Psychiatry 2007 ; 68 : 416-421. [CrossRef] [PubMed] [Google Scholar]
  17. Tranulis C, Sepehry AA, Galinowski A, Stip E. Should we treat auditory hallucinations with repetitive transcranial magnetic stimulation? A metaanalysis. Can J Psychiatry 2008 ; 53 : 577-586. [PubMed] [Google Scholar]
  18. Paillère Martinot ML, Galinowski A, Ringuenet D, et al. Influence of prefrontal target region on the efficacy of repetitive transcranial magnetic stimulation in patients with medication-resistant depression: a [(18)F]-fluorodeoxyglucose PET and MRI study. Int J Neuropsychopharmacol 2010 ; 13 : 45-59. [CrossRef] [PubMed] [Google Scholar]
  19. Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D (2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001 ; 179 : 503-508. [CrossRef] [PubMed] [Google Scholar]
  20. Xiberas X, Martinot JL, Mallet L, et al. In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol 2001 ; 21 : 207-214. [CrossRef] [PubMed] [Google Scholar]
  21. Haldane M, Frangou S. Functional neuroimaging studies in mood disorders. Acta Neuropsychiatrica 2006 ; 18 : 88-99. [CrossRef] [PubMed] [Google Scholar]
  22. Martinot JL, Hardy P, Feline A, et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 1990 ; 147 : 1313-1317. [PubMed] [Google Scholar]
  23. Thomas EJ, Elliot R. Brain imaging correlates of cognitive impairment in depression. Front Hum Neurosci 2009 ; 3 : 1-9. [PubMed] [Google Scholar]
  24. Matthews SC, Strigo IA, Simmons AN, et al. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord 2008 ; 111 : 13-20. [CrossRef] [PubMed] [Google Scholar]
  25. Bragulat V, Paillère-Martinot ML, Artiges E, et al. Dopaminergic function in depressed patients with affective flattening or with impulsivity: [18F]fluoro-L-dopa positron emission tomography study with voxel-based analysis. Psychiatry Res 2007 ; 154 : 115-124. [CrossRef] [PubMed] [Google Scholar]
  26. Rainer Q, Gardier AM, Hen R, David D. Mécanismes des effets comportementaux de type anxiolytique/antidépresseur de la fluoxétine (Prozac®) : implication de la neurogenèse hippocampique. Med/Sci (Paris) 2009 ; 25 : 795-798. [Google Scholar]
  27. Sandu AL, Artiges E, Lemaitre H, et al. VBM in patients with treatment-resistant depression using standard, new segmentation and DARTEL. Communication to the 16th annual meeting of the organization for human brain mapping, Barcelone, 6-10 juin 2010. [Google Scholar]
  28. Wessa M, Houenou J, Leboyer M, et al. Microstructural white matter changes in euthymic bipolar patients: a whole-brain diffusion tensor imaging study. Bipolar Disord 2009 ; 11 : 504-514. [CrossRef] [PubMed] [Google Scholar]
  29. Wessa M, Houenou J, Paillère-Martinot ML, et al. Increased frontal-striatal activation during response inhibition to emotional faces in euthymic bipolar disorder. Am J Psychiatry 2007 ; 164 : 638-646. [CrossRef] [PubMed] [Google Scholar]
  30. Fu CH, Williams SC, Brammer MJ, et al. Neural responses to happy facial expressions in major depression following anti-depressant treatment. Am J Psychiatry 2007 ; 164 : 599-607. [CrossRef] [PubMed] [Google Scholar]
  31. Sheline YI, Barch DM, Donnelly JM, et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 2001 ; 50 : 651-658. [CrossRef] [PubMed] [Google Scholar]
  32. Fu CH, Williams SC, Cleare AJ, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry 2008 ; 64 : 505-512. [CrossRef] [PubMed] [Google Scholar]
  33. Siegle GJ, Carter CS, Thase ME. Use of fMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry 2006 ; 163 : 735-737. [CrossRef] [PubMed] [Google Scholar]
  34. Duchesnay E, Cachia A, Roche A, et al. Classification based on cortical folding patterns. IEEE Trans Med Imaging 2007 ; 26 : 553-565. [CrossRef] [PubMed] [Google Scholar]
  35. Purper-Ouakil D, Lepagnol-Bestel AM, Grosbellet E, et al. Neurobiologie du trouble déficit de l’attention/hyperactivité. Med Sci (Paris) 2010 ; 26 : 487-496. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Kerstin J, Plessen MD, Jason M, et al. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2007 ; 16 : 60-70. [CrossRef] [PubMed] [Google Scholar]
  37. Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry 2009 ; 166 : 6664-674. [CrossRef] [PubMed] [Google Scholar]
  38. Martinot JL, Allilaire JF, Mazoyer BM, et al. Obsessive-compulsive disorder: a clinical, neuropsychological and positron emission tomography study. Acta Psychiatr Scand 1990 ; 82 : 233-242. [CrossRef] [PubMed] [Google Scholar]
  39. Viard A, Flament MF, Artiges E, et al. Cognitive control in childhood-onset obsessive-compulsive disorder: a functional MRI study. Psychol Med 2005 ; 35 : 1007-1017. [CrossRef] [PubMed] [Google Scholar]
  40. Chanraud S, Martelli C, Delain F, et al. Brain morphometry and cognitive performance in detoxified alcohol-dependents with preserved psychosocial functioning. Neuropsychopharmacology 2007 ; 32 : 429-438. [CrossRef] [PubMed] [Google Scholar]
  41. Chanraud S, Reynaud M, Wessa M, et al. Diffusion tensor tractography in mesencephalic bundles: relation to executive dysfunction in detoxified alcohol-dependent subjects. Neuropsychopharmacology 2009 ; 34 : 1223-1232. [CrossRef] [PubMed] [Google Scholar]
  42. Beck F, Godeau E, Legleye S, Spilka S. Les usages de drogues des plus jeunes adolescents. 1. Données épidémiologiques. Med Sci (Paris) 2007 ; 23 : 1162-1168. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Artiges E, Ricalens E, Berthoz S, et al. Exposure to smoking cues during an emotion recognition task can modulate limbic fMRI activation in cigarette smokers. Addict Biol 2009 ; 14 : 469-477. [CrossRef] [PubMed] [Google Scholar]
  44. Leroy C, Karila L, Martinot JL, et al. Striatal and extrastriatal dopamine transporter in cannabis and tobacco addiction: a high-resolution PET study. Addiction Biology 2011 ; sous presse. [Google Scholar]
  45. Volkow ND, Wang GJ, Fischman MW, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 1997 ; 386 : 827-830. [CrossRef] [PubMed] [Google Scholar]
  46. Wong DF, Kuwabara H, Schretlen DJ, et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 2006 ; 31 : 2716-2727. [CrossRef] [PubMed] [Google Scholar]
  47. Thibault D, Kortleven C, Fasano C, et al. Découvertes récentes sur la fonction et la plasticité des voies dopaminergiques du cerveau. Med/Sci (Paris) 2010 ; 26 : 165-170. [Google Scholar]
  48. Volkow ND, Fowler JS, Wang GJ, et al. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009 ; 56 : 3-8. [CrossRef] [PubMed] [Google Scholar]
  49. Mana S, Paillère ML, Martinot JL. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur Psychiatry 2010 ; 25 : 345-354. [CrossRef] [PubMed] [Google Scholar]
  50. Carmichael M. Healthy at any age. Newsweek 2010 ; 5 : 54-65. [Google Scholar]
  51. Meschan Foy J. For the american academy of pediatrics task force on mental health. Introduction. Pediatrics 2010 ; 125 : S69-S74. [CrossRef] [PubMed] [Google Scholar]
  52. Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across Multiple childhood psychopathologies. Am J Psychiatry 2009 ; 166 : 664-674. [CrossRef] [PubMed] [Google Scholar]
  53. Paus T. Population neuroscience: why and how. Hum Brain Mapp 2010 ; 31 : 891-903. [CrossRef] [PubMed] [Google Scholar]
  54. Paillère-Martinot ML, Bragulat V, Artiges E, et al. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 2001 ; 158 : 314-316. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.