Free Access
Med Sci (Paris)
Volume 27, Number 5, Mai 2011
Page(s) 467 - 470
Section Nouvelles
Published online 25 May 2011
  1. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309-314. [CrossRef] [PubMed] [Google Scholar]
  2. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis ? Nat Rev Cancer 2004 ; 4 : 891-899. [Google Scholar]
  3. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006 ; 25 : 4647-4662. [CrossRef] [PubMed] [Google Scholar]
  4. Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1 in regulating glycolysis: the seventh hallmark of cancer. Cell Mol Life Sci 2008 ; 65 : 3981-3999. [CrossRef] [PubMed] [Google Scholar]
  5. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 2005 ; 5 : 564-573. [CrossRef] [PubMed] [Google Scholar]
  6. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 1987 ; 123 : 241-250. [CrossRef] [PubMed] [Google Scholar]
  7. Miccoli L, Burr KL, Hickenbotham P, et al. The combined effects of xeroderma pigmentosum C deficiency and mutagens on mutation rates in the mouse germ line. Cancer Res 2007 ; 67 : 4695-4699. [CrossRef] [PubMed] [Google Scholar]
  8. Wijnhoven SW, Kool HJ, Mullenders LH, et al. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene 2000 ; 19 : 5034-5037. [CrossRef] [PubMed] [Google Scholar]
  9. Rezvani HR, Rossignol R, Ali N, et al. XPC silencing in normal human keratinocytes triggers metabolic alterations through NOX-1 activation-mediated reactive oxygen species. Biochim Biophys Acta 2010 ; 5 : décembre (online). [Google Scholar]
  10. Rezvani HR, Kim AL, Rossignol R, et al. XPC silencing in normal human keratinocytes triggers metabolic alterations that drive the formation of squamous cell carcinomas. J Clin Invest 2011 ; 121 : 195-211. [CrossRef] [PubMed] [Google Scholar]
  11. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 2008 ; 30 : 203-213. [CrossRef] [PubMed] [Google Scholar]
  12. Robey RB, Hay N. Is Akt the Warburg kinase ? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009 ; 19 : 25-31. [CrossRef] [PubMed] [Google Scholar]
  13. Clerkin JS, Naughton R, Quiney C, Cotter TG. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett 2008 ; 266 : 30-36. [CrossRef] [PubMed] [Google Scholar]
  14. Migdal C, Serres M. Espèces réactives de l’oxygène et stress oxydant. Med Sci (Paris) 2011 ; 27 : 405-412. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Compe E, Egly JM. Troubles neurologiques et trichothiodystrophie : sans TFIIH, les hormones thyroïdiennes défaillent. Med Sciv (Paris) 2007 ; 23 : 1171-1172. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.