Free Access
Issue |
Med Sci (Paris)
Volume 27, Number 3, Mars 2011
|
|
---|---|---|
Page(s) | 303 - 301 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2011273303 | |
Published online | 30 March 2011 |
- ZiporiD. Biology of stem cells and the molecular basis of the stem state New York : Humana Press (Springer), 2009 : 278 p. [Google Scholar]
- ZiporiD. The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenviron 2010 ; 3 : 15-28. [CrossRef] [PubMed] [Google Scholar]
- ZiporiD. The nature of stem cells: state rather than entity. Nat Rev Genet 2004 ; 5 : 873-878. [CrossRef] [PubMed] [Google Scholar]
- EfroniS, DuttaguptaR, ChengJ, et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008 ; 2 : 437-447. [CrossRef] [PubMed] [Google Scholar]
- FeinbergAP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007 ; 447 : 433-440. [CrossRef] [PubMed] [Google Scholar]
- SparmannA, van LohuizenM. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006 ; 6 : 846-856. [CrossRef] [PubMed] [Google Scholar]
- MoradV, Pevsner-FischerM, BarneesS, et al. The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells 2008 ; 26 : 2275-2286. [CrossRef] [PubMed] [Google Scholar]
- BirnbaumKD, Sanchez AlvaradoA. Slicing across kingdoms: regeneration in plants and animals. Cell 2008 ; 132 : 697-710. [CrossRef] [PubMed] [Google Scholar]
- BrockesJP, KumarA. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 2002 ; 3 : 566-574. [CrossRef] [PubMed] [Google Scholar]
- TanakaEM. Regeneration: if they can do it, why can’t we?Cell 2003 ; 113 : 559-562. [CrossRef] [PubMed] [Google Scholar]
- NakagawaT, NabeshimaY, YoshidaS. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007 ; 12 : 195-206. [CrossRef] [PubMed] [Google Scholar]
- ChenX, MaoZ, LiuS, et al. Dedifferentiation of adult human myoblasts induced by CNTF in vitro. Mol Biol Cell 2005 ; 16 : 3140-3151. [CrossRef] [PubMed] [Google Scholar]
- McGannCJ, OdelbergSJ, KeatingMT. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 2001 ; 98 : 13699-13704. [CrossRef] [Google Scholar]
- KondoT, RaffM. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 2004 ; 18 : 2963-2972. [Google Scholar]
- MatsumotoT, KanoK, KondoD, et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. Cell Physiol 2008 ; 215 : 210-222. [CrossRef] [Google Scholar]
- ZiporiD, FriedmanA, TamirM, et al. Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. Cell Physiol 1984 ; 118 : 143-152. [CrossRef] [Google Scholar]
- GershengornMC, HardikarAA, WeiC, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004 ; 406 : 2261-2264. [CrossRef] [PubMed] [Google Scholar]
- ZiporiD. The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells 2005 ; 23 : 719-726. [CrossRef] [PubMed] [Google Scholar]
- FerrariG, Cusella-De AngelisG, ColettaM, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998 ; 279 : 1528-1530. [CrossRef] [PubMed] [Google Scholar]
- ShimizuK, SugiyamaS, AikawaM, et al. Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med 2001 ; 7 : 738-741. [CrossRef] [PubMed] [Google Scholar]
- ChenSK, TvrdikP, PedenE, et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010 ; 141 : 775-785. [CrossRef] [PubMed] [Google Scholar]
- PetersenBE, BowenWC, PatreneKD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999 ; 284 : 1168-1170. [CrossRef] [PubMed] [Google Scholar]
- SpeesJL, OlsonSD, YlostaloJ, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003 ; 100 : 2397-2402. [CrossRef] [Google Scholar]
- KicicA, ShenWY, WilsonAS, et al. Differentiation of marrow stromal cells into photoreceptors in the rat eye. Neurosci 2003 ; 23 : 7742-7749. [Google Scholar]
- YokooT, OhashiT, ShenJS, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 2005 ; 102 : 3296-3300. [CrossRef] [Google Scholar]
- SatoY, ArakiH, KatoJ, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005 ; 106 : 756-763. [CrossRef] [PubMed] [Google Scholar]
- SerafiniM, DyllaSJ, OkiM, et al. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. Exp Med 2007 ; 204 : 129-139. [CrossRef] [Google Scholar]
- OgawaM, LaRueAC, DrakeCJ. Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications. Blood 2006 ; 108 : 2893-2896. [CrossRef] [PubMed] [Google Scholar]
- JangYY, CollectorMI, BaylinSB, et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004 ; 6 : 532-539. [CrossRef] [PubMed] [Google Scholar]
- JiangS, BaileyAS, GoldmanDC, et al. Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One, 2008 ; 3 : e3812. [CrossRef] [PubMed] [Google Scholar]
- BoothBW, MackDL, Androutsellis-TheotokisA, et al. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA 2008 ; 105 : 14891-14896. [CrossRef] [Google Scholar]
- CowanCA, AtienzaJ, MeltonDA, EgganK. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005 ; 309 : 1369-1373. [CrossRef] [PubMed] [Google Scholar]
- Alvarez-DoladoM, PardalR, Garcia-VerdugoJM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003 ; 425 : 968-973. [CrossRef] [PubMed] [Google Scholar]
- VassilopoulosG, WangPR, RussellDW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003 ; 422 : 901-904. [CrossRef] [PubMed] [Google Scholar]
- WangX, WillenbringH, AkkariY, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003 ; 422 : 897-901. [CrossRef] [PubMed] [Google Scholar]
- InoueK, WakaoH, OgonukiN, et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 2005 ; 15 : 1114-1118. [CrossRef] [PubMed] [Google Scholar]
- TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663-676. [CrossRef] [PubMed] [Google Scholar]
- ShamblottMJ, AxelmanJ, WangS, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998 ; 95 : 13726-13731. [CrossRef] [Google Scholar]
- GuanK, NayerniaK, MaierLS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006 ; 440 : 1199-1203. [CrossRef] [PubMed] [Google Scholar]
- KossackN, MenesesJ, ShefiS, et al. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 2009 ; 27 : 138-149. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.