Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 3, Mars 2011
Page(s) 303 - 301
Section M/S revues
DOI https://doi.org/10.1051/medsci/2011273303
Publié en ligne 30 mars 2011
  1. ZiporiD. Biology of stem cells and the molecular basis of the stem state New York : Humana Press (Springer), 2009 : 278 p. [Google Scholar]
  2. ZiporiD. The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. Cancer Microenviron 2010 ; 3 : 15-28. [CrossRef] [PubMed] [Google Scholar]
  3. ZiporiD. The nature of stem cells: state rather than entity. Nat Rev Genet 2004 ; 5 : 873-878. [CrossRef] [PubMed] [Google Scholar]
  4. EfroniS, DuttaguptaR, ChengJ, et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008 ; 2 : 437-447. [CrossRef] [PubMed] [Google Scholar]
  5. FeinbergAP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007 ; 447 : 433-440. [CrossRef] [PubMed] [Google Scholar]
  6. SparmannA, van LohuizenM. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006 ; 6 : 846-856. [CrossRef] [PubMed] [Google Scholar]
  7. MoradV, Pevsner-FischerM, BarneesS, et al. The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells 2008 ; 26 : 2275-2286. [CrossRef] [PubMed] [Google Scholar]
  8. BirnbaumKD, Sanchez AlvaradoA. Slicing across kingdoms: regeneration in plants and animals. Cell 2008 ; 132 : 697-710. [CrossRef] [PubMed] [Google Scholar]
  9. BrockesJP, KumarA. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 2002 ; 3 : 566-574. [CrossRef] [PubMed] [Google Scholar]
  10. TanakaEM. Regeneration: if they can do it, why can’t we?Cell 2003 ; 113 : 559-562. [CrossRef] [PubMed] [Google Scholar]
  11. NakagawaT, NabeshimaY, YoshidaS. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007 ; 12 : 195-206. [CrossRef] [PubMed] [Google Scholar]
  12. ChenX, MaoZ, LiuS, et al. Dedifferentiation of adult human myoblasts induced by CNTF in vitro. Mol Biol Cell 2005 ; 16 : 3140-3151. [CrossRef] [PubMed] [Google Scholar]
  13. McGannCJ, OdelbergSJ, KeatingMT. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 2001 ; 98 : 13699-13704. [CrossRef] [Google Scholar]
  14. KondoT, RaffM. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 2004 ; 18 : 2963-2972. [CrossRef] [PubMed] [Google Scholar]
  15. MatsumotoT, KanoK, KondoD, et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. Cell Physiol 2008 ; 215 : 210-222. [CrossRef] [Google Scholar]
  16. ZiporiD, FriedmanA, TamirM, et al. Cultured mouse marrow cell lines: interactions between fibroblastoid cells and monocytes. Cell Physiol 1984 ; 118 : 143-152. [CrossRef] [Google Scholar]
  17. GershengornMC, HardikarAA, WeiC, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004 ; 406 : 2261-2264. [CrossRef] [PubMed] [Google Scholar]
  18. ZiporiD. The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells 2005 ; 23 : 719-726. [CrossRef] [PubMed] [Google Scholar]
  19. FerrariG, Cusella-De AngelisG, ColettaM, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998 ; 279 : 1528-1530. [CrossRef] [PubMed] [Google Scholar]
  20. ShimizuK, SugiyamaS, AikawaM, et al. Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med 2001 ; 7 : 738-741. [CrossRef] [PubMed] [Google Scholar]
  21. ChenSK, TvrdikP, PedenE, et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010 ; 141 : 775-785. [CrossRef] [PubMed] [Google Scholar]
  22. PetersenBE, BowenWC, PatreneKD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999 ; 284 : 1168-1170. [CrossRef] [PubMed] [Google Scholar]
  23. SpeesJL, OlsonSD, YlostaloJ, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003 ; 100 : 2397-2402. [CrossRef] [Google Scholar]
  24. KicicA, ShenWY, WilsonAS, et al. Differentiation of marrow stromal cells into photoreceptors in the rat eye. Neurosci 2003 ; 23 : 7742-7749. [Google Scholar]
  25. YokooT, OhashiT, ShenJS, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 2005 ; 102 : 3296-3300. [CrossRef] [Google Scholar]
  26. SatoY, ArakiH, KatoJ, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005 ; 106 : 756-763. [CrossRef] [PubMed] [Google Scholar]
  27. SerafiniM, DyllaSJ, OkiM, et al. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. Exp Med 2007 ; 204 : 129-139. [CrossRef] [Google Scholar]
  28. OgawaM, LaRueAC, DrakeCJ. Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications. Blood 2006 ; 108 : 2893-2896. [CrossRef] [PubMed] [Google Scholar]
  29. JangYY, CollectorMI, BaylinSB, et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004 ; 6 : 532-539. [CrossRef] [PubMed] [Google Scholar]
  30. JiangS, BaileyAS, GoldmanDC, et al. Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One, 2008 ; 3 : e3812. [CrossRef] [PubMed] [Google Scholar]
  31. BoothBW, MackDL, Androutsellis-TheotokisA, et al. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA 2008 ; 105 : 14891-14896. [CrossRef] [Google Scholar]
  32. CowanCA, AtienzaJ, MeltonDA, EgganK. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005 ; 309 : 1369-1373. [CrossRef] [PubMed] [Google Scholar]
  33. Alvarez-DoladoM, PardalR, Garcia-VerdugoJM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003 ; 425 : 968-973. [CrossRef] [PubMed] [Google Scholar]
  34. VassilopoulosG, WangPR, RussellDW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003 ; 422 : 901-904. [CrossRef] [PubMed] [Google Scholar]
  35. WangX, WillenbringH, AkkariY, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003 ; 422 : 897-901. [CrossRef] [PubMed] [Google Scholar]
  36. InoueK, WakaoH, OgonukiN, et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 2005 ; 15 : 1114-1118. [CrossRef] [PubMed] [Google Scholar]
  37. TakahashiK, YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663-676. [CrossRef] [PubMed] [Google Scholar]
  38. ShamblottMJ, AxelmanJ, WangS, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998 ; 95 : 13726-13731. [CrossRef] [Google Scholar]
  39. GuanK, NayerniaK, MaierLS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006 ; 440 : 1199-1203. [CrossRef] [PubMed] [Google Scholar]
  40. KossackN, MenesesJ, ShefiS, et al. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 2009 ; 27 : 138-149. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.