Free Access
Issue
Med Sci (Paris)
Volume 27, Number 3, Mars 2011
Page(s) 289 - 296
Section M/S revues
DOI https://doi.org/10.1051/medsci/2011273289
Published online 30 March 2011
  1. EnglerAJ, SenS, SweeneyHL, DischerDE. Matrix elasticity directs stem cell lineage specification. Cell 2006 ; 126 : 677-689. [CrossRef] [PubMed] [Google Scholar]
  2. KassemM, AbdallahBM. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 2008 ; 331 : 157-163. [CrossRef] [PubMed] [Google Scholar]
  3. GomillionCT, BurgKJ. Stem cells and adipose tissue engineering. Biomaterials 2006 ; 27 : 6052-6063. [CrossRef] [PubMed] [Google Scholar]
  4. JohnstoneB, HeringTM, CaplanAI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998 ; 238 : 265-272. [CrossRef] [PubMed] [Google Scholar]
  5. KogaH, MunetaT, NagaseT, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008 ; 333 : 207-215. [CrossRef] [PubMed] [Google Scholar]
  6. ScottiC, TonnarelliB, PapadimitropoulosA, et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA 2010 ; 107 : 7251-7256. [CrossRef] [Google Scholar]
  7. VinatierC, MrugalaD, JorgensenC, et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 2009 ; 27 : 307-314. [CrossRef] [PubMed] [Google Scholar]
  8. MerceronC, VinatierC, PortronS, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol 2010 ; 298 : C355-C364. [CrossRef] [PubMed] [Google Scholar]
  9. TerracianoV, HwangN, MoroniL, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 2007 ; 25 : 2730-2738. [CrossRef] [PubMed] [Google Scholar]
  10. PelttariK, WinterA, SteckE, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 2006 ; 54 : 3254-3266. [CrossRef] [PubMed] [Google Scholar]
  11. GiovanniniS, Diaz-RomeroJ, AignerT, et al. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur Cell Mater 2010 ; 20 : 245-259. [PubMed] [Google Scholar]
  12. MerceronC, PortronS, MassonM, et al. Cartilage tissue engineering: from hydrogel to mesenchymal stem cells. Biomed Mater Eng 2010 ; 20 : 159-166. [PubMed] [Google Scholar]
  13. WakitaniS, ImotoK, YamamotoT, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002 ; 10 : 199-206. [CrossRef] [PubMed] [Google Scholar]
  14. WakitaniS, MitsuokaT, NakamuraN, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004 ; 13 : 595-600. [CrossRef] [PubMed] [Google Scholar]
  15. WakitaniS, NawataM, TenshoK, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Tissue Eng Regen Med 2007 ; 1 : 74-79. [CrossRef] [Google Scholar]
  16. DawsonE, MapiliG, EricksonK, et al. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008 ; 60 : 215-228. [CrossRef] [PubMed] [Google Scholar]
  17. FriedensteinAJ, ChailakhyanRK, GerasimovUV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987 ; 20 : 263-272. [PubMed] [Google Scholar]
  18. BuenoEM, GlowackiJ. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 2009 ; 5 : 685-697. [CrossRef] [PubMed] [Google Scholar]
  19. XiaoY, QianH, YoungWG, BartoldPM. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng 2003 ; 9 : 1167-1177. [CrossRef] [PubMed] [Google Scholar]
  20. JukesJM, van BlitterswijkCA, de BoerJ. Skeletal tissue engineering using embryonic stem cells. Tissue Eng Regen Med 2008 ; 4 : 165-180. [CrossRef] [Google Scholar]
  21. LiF, BronsonS, NiyibiziC. Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. Cell Biochem 2010 ; 109 : 643-652. [Google Scholar]
  22. ReddiAH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 2000 ; 6 : 351-359. [CrossRef] [PubMed] [Google Scholar]
  23. MarieP.. Différenciation, fonction et contrôle de l’ostéoblaste. Med Sci (Paris) 2001 ; 17 : 1252-1259. [CrossRef] [EDP Sciences] [Google Scholar]
  24. SwethaM, SahithiK, MoorthiA, et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2011 ; (sous presse). [Google Scholar]
  25. DattaN, PhamQP, SharmaU, et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 2006 ; 103 : 2488-2493. [CrossRef] [Google Scholar]
  26. ScherberichA, GalliR, JaquieryC, et al. Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 2007 ; 25 : 1823-1829. [CrossRef] [PubMed] [Google Scholar]
  27. YuH, VandeVordPJ, MaoL, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 2009 ; 30 : 508-517. [CrossRef] [PubMed] [Google Scholar]
  28. GrellierM, BordenaveL, AmédéeJ. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 2009 ; 27 : 562-571. [CrossRef] [PubMed] [Google Scholar]
  29. ChenSS, FitzgeraldW, ZimmerbergJ, et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007 ; 25 : 553-561. [CrossRef] [PubMed] [Google Scholar]
  30. ReichertJC, SaifzadehS, WullschlegerME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009 ; 30 : 2149-2163. [CrossRef] [PubMed] [Google Scholar]
  31. ChatterjeaA, MeijerGJ, van BlitterswijkC, de BoerJ. Clinical applications of human mesenchymal stromal cells for bone tissue engineering. Stem Cell Int 2011 ; (sous presse). [Google Scholar]
  32. QuartoR, MastrogiacomoM, CanceddaR, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. Engl J Med 2001 ; 344 : 385-386. [Google Scholar]
  33. MeijerGJ, de BruijnJD, KooleR, et al. Cell based bone tissue engineering in jaw defects. Biomaterials 2008 ; 29 : 3053-3061. [CrossRef] [PubMed] [Google Scholar]
  34. DeutschM, MeinhartJ, ZillaP, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. Vasc Surg 2009 ; 49 : 352-362. [CrossRef] [PubMed] [Google Scholar]
  35. McAllisterTN, MaruszewskiM, GarridoSA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009 ; 373 : 1440-1446. [CrossRef] [PubMed] [Google Scholar]
  36. Shin’okaT, MatsumuraG, HibinoN, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Thorac Cardiovasc Surg 2005 ; 129 : 1330-1338. [Google Scholar]
  37. Hanjaya-PutraD, GerechtS. Vascular engineering using human embryonic stem cells. Biotechnol Prog 2009 ; 25 : 2-9. [CrossRef] [PubMed] [Google Scholar]
  38. YamaharaK, ItohH. Potential use of endothelial progenitor cells for regeneration of the vasculature. Ther Adv Cardiovasc Dis 2010 ; 3 : 17-27. [CrossRef] [Google Scholar]
  39. TauraD, SoneDM, HommaK, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells-brief report. Arterioscler Thromb Vasc Biol 2009 ; 29 : 1100-1103. [CrossRef] [PubMed] [Google Scholar]
  40. LatailladeJJ, Brunet de la GrangeP, UzanG, Le Bousse-KerdilèsMC. Les cellules souches ont-elles l’âge de leur niche ? À la recherche d’un sérum de jouvence. Med Sci (Paris) 2010 ; 27 : ???-???. [Google Scholar]
  41. KrenningG, van LuynMJ, HarmsenMC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 2009 ; 15 : 180-189. [CrossRef] [PubMed] [Google Scholar]
  42. SmadjaDM, CornetA, EmmerichJ, et al. Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 2007 ; 23 : 223-239. [CrossRef] [PubMed] [Google Scholar]
  43. WardMR, StewartDJ, KutrykMJ. Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives. Catheter Cardiovasc Interv 2007 ; 70 : 983-998. [Google Scholar]
  44. BrownMA, WallaceCS, AngelosM, TruskeyGA. Characterization of umbilical cord blood derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng Part A 2009 ; 15 : 3575-3587. [CrossRef] [PubMed] [Google Scholar]
  45. KaushalS, AmielGE, GuleserianKJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001 ; 7 : 1035-1040. [CrossRef] [PubMed] [Google Scholar]
  46. MatsumuraG, HibinoN, IkadaY, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003 ; 24 : 2303-2308. [CrossRef] [PubMed] [Google Scholar]
  47. RohJD, Sawh-MartinezR, BrennanMP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 2010 ; 107 : 4669-4674. [CrossRef] [Google Scholar]
  48. HongSJ, TraktuevDO, MarchKL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 2010 ; 15 : 86-91. [CrossRef] [PubMed] [Google Scholar]
  49. Avci-AdaliM, ZiemerG, WendelHP. Induction of EPC-homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization. A review of current strategies. Biotech Adv 2010 ; 28 : 119-129. [CrossRef] [Google Scholar]
  50. MeiY, SahaK, BogatyrevSR, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010 ; 9 : 768-778. [CrossRef] [PubMed] [Google Scholar]
  51. Meddahi-PelléA, BatailleI, SubraP, LetourneurD.. Biomatériaux vasculaires : du génie biologique et médical au génie tissulaire. Med Sci (Paris) 2004 ; 20 : 679-684. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. SensebéL. Bourin P.Cellules souches mésenchymateuses : production à usage clinique et contraintes sécuritaires. Med Sci (Paris) 2011 ; 27 : 297-302. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. JorgensenC, DeschaseauxF, Planat-BenardV, GabisonE.. Les cellules souches mésenchymateuses : actualités thérapeutiques. Med Sci (Paris) 2011 ; 27 : 275-284. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. MénardC, TarteK.. Immunosuppression et cellules souches mésenchymateuses : mieux comprendre une propriété thérapeutique majeure. Med Sci (Paris) 2011 ; 27 : 269-274. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.