Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 3, Mars 2011
Page(s) 289 - 296
Section M/S revues
DOI https://doi.org/10.1051/medsci/2011273289
Publié en ligne 30 mars 2011
  1. EnglerAJ, SenS, SweeneyHL, DischerDE. Matrix elasticity directs stem cell lineage specification. Cell 2006 ; 126 : 677-689. [CrossRef] [PubMed] [Google Scholar]
  2. KassemM, AbdallahBM. Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 2008 ; 331 : 157-163. [CrossRef] [PubMed] [Google Scholar]
  3. GomillionCT, BurgKJ. Stem cells and adipose tissue engineering. Biomaterials 2006 ; 27 : 6052-6063. [CrossRef] [PubMed] [Google Scholar]
  4. JohnstoneB, HeringTM, CaplanAI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998 ; 238 : 265-272. [CrossRef] [PubMed] [Google Scholar]
  5. KogaH, MunetaT, NagaseT, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008 ; 333 : 207-215. [CrossRef] [PubMed] [Google Scholar]
  6. ScottiC, TonnarelliB, PapadimitropoulosA, et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA 2010 ; 107 : 7251-7256. [CrossRef] [Google Scholar]
  7. VinatierC, MrugalaD, JorgensenC, et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 2009 ; 27 : 307-314. [CrossRef] [PubMed] [Google Scholar]
  8. MerceronC, VinatierC, PortronS, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol 2010 ; 298 : C355-C364. [CrossRef] [PubMed] [Google Scholar]
  9. TerracianoV, HwangN, MoroniL, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 2007 ; 25 : 2730-2738. [CrossRef] [PubMed] [Google Scholar]
  10. PelttariK, WinterA, SteckE, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 2006 ; 54 : 3254-3266. [CrossRef] [PubMed] [Google Scholar]
  11. GiovanniniS, Diaz-RomeroJ, AignerT, et al. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur Cell Mater 2010 ; 20 : 245-259. [PubMed] [Google Scholar]
  12. MerceronC, PortronS, MassonM, et al. Cartilage tissue engineering: from hydrogel to mesenchymal stem cells. Biomed Mater Eng 2010 ; 20 : 159-166. [PubMed] [Google Scholar]
  13. WakitaniS, ImotoK, YamamotoT, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002 ; 10 : 199-206. [CrossRef] [PubMed] [Google Scholar]
  14. WakitaniS, MitsuokaT, NakamuraN, et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004 ; 13 : 595-600. [CrossRef] [PubMed] [Google Scholar]
  15. WakitaniS, NawataM, TenshoK, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. Tissue Eng Regen Med 2007 ; 1 : 74-79. [CrossRef] [Google Scholar]
  16. DawsonE, MapiliG, EricksonK, et al. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008 ; 60 : 215-228. [CrossRef] [PubMed] [Google Scholar]
  17. FriedensteinAJ, ChailakhyanRK, GerasimovUV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987 ; 20 : 263-272. [PubMed] [Google Scholar]
  18. BuenoEM, GlowackiJ. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 2009 ; 5 : 685-697. [CrossRef] [PubMed] [Google Scholar]
  19. XiaoY, QianH, YoungWG, BartoldPM. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng 2003 ; 9 : 1167-1177. [CrossRef] [PubMed] [Google Scholar]
  20. JukesJM, van BlitterswijkCA, de BoerJ. Skeletal tissue engineering using embryonic stem cells. Tissue Eng Regen Med 2008 ; 4 : 165-180. [CrossRef] [Google Scholar]
  21. LiF, BronsonS, NiyibiziC. Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. Cell Biochem 2010 ; 109 : 643-652. [Google Scholar]
  22. ReddiAH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 2000 ; 6 : 351-359. [CrossRef] [PubMed] [Google Scholar]
  23. MarieP.. Différenciation, fonction et contrôle de l’ostéoblaste. Med Sci (Paris) 2001 ; 17 : 1252-1259. [CrossRef] [EDP Sciences] [Google Scholar]
  24. SwethaM, SahithiK, MoorthiA, et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2011 ; (sous presse). [Google Scholar]
  25. DattaN, PhamQP, SharmaU, et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 2006 ; 103 : 2488-2493. [CrossRef] [Google Scholar]
  26. ScherberichA, GalliR, JaquieryC, et al. Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 2007 ; 25 : 1823-1829. [CrossRef] [PubMed] [Google Scholar]
  27. YuH, VandeVordPJ, MaoL, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 2009 ; 30 : 508-517. [CrossRef] [PubMed] [Google Scholar]
  28. GrellierM, BordenaveL, AmédéeJ. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 2009 ; 27 : 562-571. [CrossRef] [PubMed] [Google Scholar]
  29. ChenSS, FitzgeraldW, ZimmerbergJ, et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 2007 ; 25 : 553-561. [CrossRef] [PubMed] [Google Scholar]
  30. ReichertJC, SaifzadehS, WullschlegerME, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009 ; 30 : 2149-2163. [CrossRef] [PubMed] [Google Scholar]
  31. ChatterjeaA, MeijerGJ, van BlitterswijkC, de BoerJ. Clinical applications of human mesenchymal stromal cells for bone tissue engineering. Stem Cell Int 2011 ; (sous presse). [Google Scholar]
  32. QuartoR, MastrogiacomoM, CanceddaR, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. Engl J Med 2001 ; 344 : 385-386. [CrossRef] [PubMed] [Google Scholar]
  33. MeijerGJ, de BruijnJD, KooleR, et al. Cell based bone tissue engineering in jaw defects. Biomaterials 2008 ; 29 : 3053-3061. [CrossRef] [PubMed] [Google Scholar]
  34. DeutschM, MeinhartJ, ZillaP, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. Vasc Surg 2009 ; 49 : 352-362. [CrossRef] [PubMed] [Google Scholar]
  35. McAllisterTN, MaruszewskiM, GarridoSA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009 ; 373 : 1440-1446. [CrossRef] [PubMed] [Google Scholar]
  36. Shin’okaT, MatsumuraG, HibinoN, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Thorac Cardiovasc Surg 2005 ; 129 : 1330-1338. [CrossRef] [PubMed] [Google Scholar]
  37. Hanjaya-PutraD, GerechtS. Vascular engineering using human embryonic stem cells. Biotechnol Prog 2009 ; 25 : 2-9. [CrossRef] [PubMed] [Google Scholar]
  38. YamaharaK, ItohH. Potential use of endothelial progenitor cells for regeneration of the vasculature. Ther Adv Cardiovasc Dis 2010 ; 3 : 17-27. [CrossRef] [Google Scholar]
  39. TauraD, SoneDM, HommaK, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells-brief report. Arterioscler Thromb Vasc Biol 2009 ; 29 : 1100-1103. [CrossRef] [PubMed] [Google Scholar]
  40. LatailladeJJ, Brunet de la GrangeP, UzanG, Le Bousse-KerdilèsMC. Les cellules souches ont-elles l’âge de leur niche ? À la recherche d’un sérum de jouvence. Med Sci (Paris) 2010 ; 27 : ???-???. [Google Scholar]
  41. KrenningG, van LuynMJ, HarmsenMC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 2009 ; 15 : 180-189. [CrossRef] [PubMed] [Google Scholar]
  42. SmadjaDM, CornetA, EmmerichJ, et al. Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 2007 ; 23 : 223-239. [CrossRef] [PubMed] [Google Scholar]
  43. WardMR, StewartDJ, KutrykMJ. Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives. Catheter Cardiovasc Interv 2007 ; 70 : 983-998. [CrossRef] [PubMed] [Google Scholar]
  44. BrownMA, WallaceCS, AngelosM, TruskeyGA. Characterization of umbilical cord blood derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng Part A 2009 ; 15 : 3575-3587. [CrossRef] [PubMed] [Google Scholar]
  45. KaushalS, AmielGE, GuleserianKJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001 ; 7 : 1035-1040. [CrossRef] [PubMed] [Google Scholar]
  46. MatsumuraG, HibinoN, IkadaY, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003 ; 24 : 2303-2308. [CrossRef] [PubMed] [Google Scholar]
  47. RohJD, Sawh-MartinezR, BrennanMP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 2010 ; 107 : 4669-4674. [CrossRef] [Google Scholar]
  48. HongSJ, TraktuevDO, MarchKL. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 2010 ; 15 : 86-91. [CrossRef] [PubMed] [Google Scholar]
  49. Avci-AdaliM, ZiemerG, WendelHP. Induction of EPC-homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization. A review of current strategies. Biotech Adv 2010 ; 28 : 119-129. [CrossRef] [Google Scholar]
  50. MeiY, SahaK, BogatyrevSR, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010 ; 9 : 768-778. [CrossRef] [PubMed] [Google Scholar]
  51. Meddahi-PelléA, BatailleI, SubraP, LetourneurD.. Biomatériaux vasculaires : du génie biologique et médical au génie tissulaire. Med Sci (Paris) 2004 ; 20 : 679-684. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. SensebéL. Bourin P.Cellules souches mésenchymateuses : production à usage clinique et contraintes sécuritaires. Med Sci (Paris) 2011 ; 27 : 297-302. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. JorgensenC, DeschaseauxF, Planat-BenardV, GabisonE.. Les cellules souches mésenchymateuses : actualités thérapeutiques. Med Sci (Paris) 2011 ; 27 : 275-284. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. MénardC, TarteK.. Immunosuppression et cellules souches mésenchymateuses : mieux comprendre une propriété thérapeutique majeure. Med Sci (Paris) 2011 ; 27 : 269-274. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.