Free Access
Issue
Med Sci (Paris)
Volume 26, Number 12, Décembre 2010
Page(s) 1099 - 1101
Section Repères
DOI https://doi.org/10.1051/medsci/201026121099
Published online 15 December 2010
  1. Anderson BA, Becke LM, Booher RN, et al. Application of palladium(0)-catalyzed processes to the synthesis of oxazole-containing partial ergot alkaloids. J Org Chem 1997 ; 62 : 8634-9. [Google Scholar]
  2. Negishi E-I. Palladium-catalyzed carbon-carbon cross-coupling. Overview of the Negishi protocol with Zn, Al, Zr, and related metals. In : Negishi EI, ed. Handbook of organopalladium chemistry for organic synthesis. New York : Wiley, 2002 : 229-47. [Google Scholar]
  3. Suzuki A. Palladium-catalyzed carbon-carbon cross-coupling. Overview of the Suzuki protocol with B. In : Negishi EI, ed. Handbook of organopalladium chemistry for organic synthesis. New York : Wiley, 2002 : 249-62. [Google Scholar]
  4. Larsen RD, King AO, Chen CY, et al. Efficient synthesis of Losartan, a nonpeptide Angiotensin II receptor antagonist. J Org Chem 1994 ; 59 : 6391-4. [Google Scholar]
  5. De Vries JG. The Heck reaction in the production of fine chemicals. Can J Chem 2001 ; 79 : 1086-92. [Google Scholar]
  6. Blaser HU, Indolese A, Schnyder A. Applied homogeneous catalysis by organometallic complexes. Curr Sci 2000 ; 78 : 1336-44. [Google Scholar]
  7. Gunasekera SP, Gunasekera M, Longley RE, Schulte GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine. Org Chem 1991 ; 56 : 1346. [Google Scholar]
  8. Mickel SJ, Sedelmeier GH, Niederer D, et al. Large-scale synthesis of the anti-cancer marine natural product.-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org Process Res Dev 2004 ; 8 : 92-100. [Google Scholar]
  9. Mickel SJ, Sedelmeier GH, Niederer D, et al. Large-scale synthesis of the anti-cancer marine natural product+-discodermolide. Part 2: synthesis of fragments c1-6 and C9-14. Org Process Res Dev 2004 ; 8 : 101-6. [Google Scholar]
  10. Mickel SJ, Sedelmeier GH, Niederer D, et al. Large-scale synthesis of the anti-cancer marine natural product+-discodermolide. Part 3: synthesis of fragment C15-21. Org Process Res Dev 2004 ; 8 : 107-12. [Google Scholar]
  11. Mickel SJ, Sedelmeier GH, Niederer D, et al. I. Large-scale synthesis of the anti-cancer marine natural product+-discodermolide. Part 4: preparation of fragment c7-2. Org Process Res Dev 2004 ; 8 : 113-21. [Google Scholar]
  12. Mickel SJ, Niederer D, Daeffler R, et al. Large-scale synthesis of the anti-cancer marine natural product+-discodermolide. Part 5: linkage of fragments c1-6 and c7-24 and finale. Org Process Res Dev 2004 ; 8 : 122-30. [Google Scholar]
  13. Corbet JP, Mignani G. Selected patented cross-coupling reaction technologies. Chem Rev 2006 ; 106 : 2651-710. [Google Scholar]
  14. Beller M, Zapf A. Palladium-catalyzed coupling reactions for industrial fine chemical syntheses. In : Negishi EI, ed. Handbook of organopalladium chemistry for organic synthesis. New York : Wiley, 2002 : 1209-22. [Google Scholar]
  15. Park JK, Lee KH, Kang S, et al. Highly efficient blue-emitting materials based on 10-naphthylanthracene derivatives for OLEDs. Organic Electronics 2010 ; 11 : 905-15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.