Free Access
Issue
Med Sci (Paris)
Volume 26, Number 12, Décembre 2010
Page(s) 1074 - 1078
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026121074
Published online 15 December 2010
  1. Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997 ; 17 : 411-22. [Google Scholar]
  2. Pendred V. Deaf-mutism and goitre. Lancet 1896 ; 148 : 532. [Google Scholar]
  3. Kraiem Z, Heinrich R, Sadeh O, et al. Sulfate transport is not impaired in pendred syndrome thyrocytes. J Clin Endocrinol Metab 1999 ; 84 : 2574-6. [Google Scholar]
  4. Royaux IE, Suzuki K, Mori A, et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 2000 ; 141 : 839-45. [Google Scholar]
  5. Scott DA, Karniski LP. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/ formate exchange. Am J Physiol Cell Physiol 2000 ; 278 : C207-11. [Google Scholar]
  6. Kopp P, Pesce L, Solis SJ. Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol Metab 2008 ; 19 : 260-8. [Google Scholar]
  7. Maciaszczyk K, Lewinski A. Phenotypes of SLC26A4 gene mutations: Pendred syndrome and hypoacusis with enlarged vestibular aqueduct. NeuroEndocrinol Lett 2008 ; 29 : 29-36. [Google Scholar]
  8. Soleimani M, Greeley T, Petrovic S, et al. Pendrin: an apical Cl/OH/HCO3 exchanger in the kidney cortex. Am J Physiol Renal Physiol 2001 ; 280 : F356-64. [Google Scholar]
  9. Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol 1997 ; 273 : F179-92. [Google Scholar]
  10. Royaux IE, Wall SM, Karniski LP, et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci USA 2001 ; 98 : 4221-6. [Google Scholar]
  11. Kim YH, Kwon TH, Frische S, et al. Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 2002 ; 283 : F744-54. [Google Scholar]
  12. Wall SM, Hassell KA, Royaux IE, et al. Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 2003 ; 284 : F229-41. [Google Scholar]
  13. Knauf F, Yang CL, Thomson RB, et al. Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci USA 2001 ; 98 : 9425-30. [Google Scholar]
  14. Teng-umnuay P, Verlander JW, Yuan W, et al. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 1996 ; 7 : 260-74. [Google Scholar]
  15. Schuster VL. Function and regulation of collecting duct intercalated cells. Annu Rev Physiol 1993 ; 55 : 267-88. [Google Scholar]
  16. Wagner CA, Finberg KE, Stehberger PA, et al. Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 2002 ; 62 : 2109-17. [Google Scholar]
  17. De Seigneux S, Malte H, Dimke H, et al. Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule. Am J Physiol Renal Physiol 2007 ; 292 : F1256-66. [Google Scholar]
  18. Wall SM, Kim YH, Stanley L, et al. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl conservation. Hypertension 2004 ; 44 : 982-7. [Google Scholar]
  19. Vallet M, Picard N, Loffing-Cueni D, et al. Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 2006 ; 17 : 2153-63. [Google Scholar]
  20. Quentin F, Chambrey R, Trinh-Trang-Tan MM, et al. The Cl-/HCO3 exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 2004 ; 287 : F1179-88. [Google Scholar]
  21. Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid induced hypertension. Hypertension 2003 ; 42 : 356-62. [Google Scholar]
  22. Pech V, Zheng W, Pham TD, et al. Angiotensin II activates H+-ATPase in type A intercalated cells. J Am Soc Nephrol 2008 ; 19 : 84-91. [Google Scholar]
  23. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001 ; 104 : 545-56. [Google Scholar]
  24. Morgan T, Myers J. Dietary salt and hypertension. Aust Fam Physician 1982 ; 11 : 264-7. [Google Scholar]
  25. Schmidlin O, Tanaka M, Bollen AW, et al. Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension 2005 ; 45 : 867-73. [Google Scholar]
  26. Whitescarver SA, Ott CE, Jackson BA, et al. Salt-sensitive hypertension: contribution of chloride. Science 1984 ; 223 : 1430-2. [Google Scholar]
  27. Terada Y, Knepper MA. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol 1990 ; 259 : F519-28. [Google Scholar]
  28. Tomita K, Pisano JJ, Burg MB, Knepper MA. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest 1986 ; 77 : 136-41. [Google Scholar]
  29. Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 1985; 76 : 132-6. [Google Scholar]
  30. Leviel F, Hubner CA, Houillier P, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 2010 ; 120 : 1627-35. [Google Scholar]
  31. Eladari D, Chambrey R, Leviel F. Identification d’une nouvelle cible des diurétiques thiazidiques dans le rein. Med Sci (Paris) 2010 ; 26 : 549-52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.