Free Access
Issue |
Med Sci (Paris)
Volume 26, Number 12, Décembre 2010
|
|
---|---|---|
Page(s) | 1067 - 1073 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/201026121067 | |
Published online | 15 December 2010 |
- Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007 ; 26 : 3291-310. [Google Scholar]
- Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003 ; 3 : 459-65. [Google Scholar]
- Sternberg PW, Han M. Genetics of RAS signaling in C. elegans. Trends Genet 1998 ; 14 : 466-72. [Google Scholar]
- Wassarman DA, Therrien M, Rubin GM. The Ras signaling pathway in Drosophila. Curr Opin Genet Dev 1995 ; 5 : 44-50. [Google Scholar]
- McCormick F. Signal transduction. How receptors turn Ras on. Nature 1993 ; 363 : 15-6. [Google Scholar]
- Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 2003 ; 1603 : 47-82. [Google Scholar]
- Cutforth T, Rubin GM. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 1994 ; 77 : 1027-36. [Google Scholar]
- van der Straten A, Rommel C, Dickson B, Hafen E. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J 1997 ; 16 : 1961-9. [Google Scholar]
- Schulte TW, Blagosklonny MV, Ingui C, Neckers L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 1995 ; 270 : 24585-8. [Google Scholar]
- Grammatikakis N, Lin JH, Grammatikakis A, et al. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 1999 ; 19 : 1661-72. [Google Scholar]
- Perkins LA, Larsen I, Perrimon N. Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 1992 ; 70 : 225-36. [Google Scholar]
- Raabe T, Riesgo-Escovar J, Liu X, et al. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell 1996 ; 85 : 911-20. [Google Scholar]
- Herbst R, Zhang X, Qin J, Simon MA. Recruitment of the protein tyrosine phosphatase CSW by DOS is an essential step during signaling by the sevenless receptor tyrosine kinase. EMBO J 1999 ; 18 : 6950-61. [Google Scholar]
- Cleghon V, Feldmann P, Ghiglione C, et al. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol Cell 1998 ; 2 : 719-27. [Google Scholar]
- Hacohen N, Kramer S, Sutherland D, et al. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998 ; 92 : 253-63. [Google Scholar]
- Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004 ; 5 : 441-50. [Google Scholar]
- Jarvis LA, Toering SJ, Simon MA, et al. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 2006 ; 133 : 1133-42. [Google Scholar]
- Dikic I, Schmidt MH. Malfunctions within the Cbl interactome uncouple receptor tyrosine kinases from destructive transport. Eur J Cell Biol 2007 ; 86 : 505-12. [Google Scholar]
- Yoon CH, Lee J, Jongeward GD, Sternberg PW. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 1995 ; 269 : 1102-5. [Google Scholar]
- Campbell SL, Khosravi-Far R, Rossman KL, et al. Increasing complexity of Ras signaling. Oncogene 1998 ; 17 : 1395-413. [Google Scholar]
- Sundaram M, Han M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras- mediated signal transduction. Cell 1995 ; 83 : 889-901. [Google Scholar]
- Therrien M, Chang HC, Solomon NM, et al. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995 ; 83 : 879-88. [Google Scholar]
- Kornfeld K, Hom DB, Horvitz HR. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 1995 ; 83 : 903-13. [Google Scholar]
- Douziech M, Sahmi M, Laberge G, Therrien M. A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev 2006 ; 20 : 807-19. [Google Scholar]
- Lozano J, Xing R, Cai Z, et al. Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res 2003 ; 63 : 4232-8. [Google Scholar]
- Nguyen A, Burack WR, Stock JL, et al. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 2002 ; 22 : 3035-45. [Google Scholar]
- Claperon A, Therrien M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 2007 ; 26 : 3143-58. [Google Scholar]
- Therrien M, Wong AM, Rubin GM. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 1998 ; 95 : 343-53. [Google Scholar]
- Laberge G, Douziech M, Therrien M. Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. Embo J 2005 ; 24 : 487-98. [Google Scholar]
- Rajakulendran T, Sahmi M, Kurinov I, et al. CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling. Proc Natl Acad Sci USA 2008 ; 105 : 2836-41. [Google Scholar]
- Rajakulendran T, Sahmi M, Lefrançois M, et al. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 2009 ; 461 : 542-5. [Google Scholar]
- Lavoie H, Therrien M. Mécanisme d’activation de l’oncogène BRAF : l’union fait la force. Med Sci (Paris) 2010 ; 26 : 459-60. [Google Scholar]
- Sieburth DS, Sun Q, Han M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 1998 ; 94 : 119-30. [Google Scholar]
- Selfors LM, Schutzman JL, Borland CZ, Stern MJ. Soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc Natl Acad Sci USA 1998 ; 95 : 6903-8. [Google Scholar]
- Li W, Han M, Guan KL. The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 2000 ; 14 : 895-900. [Google Scholar]
- Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, et al. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 2006 ; 22 : 217-30. [Google Scholar]
- Wassarman DA, Solomon NM, Chang HC, et al. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev 1996 ; 10 : 272-8. [Google Scholar]
- Dougherty MK, Morrison DK. Unlocking the code of 14-3-3. J Cell Sci 2004 ; 117 : 1875-84. [Google Scholar]
- Tzivion G, Luo Z, Avruch J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 1998 ; 394 : 88-92. [Google Scholar]
- Kockel L, Vorbruggen G, Jackle H, et al. Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev 1997 ; 11 : 1140-7. [Google Scholar]
- Chang HC, Rubin GM. 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev 1997 ; 11 : 1132-9. [Google Scholar]
- Sieburth DS, Sundaram M, Howard RM, Han M. A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev 1999 ; 13 : 2562-9. [Google Scholar]
- Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBOJ 2004 ; 23 : 111-9. [Google Scholar]
- Karim FD, Rubin GM. PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol Cell 1999 ; 3 : 741-50. [Google Scholar]
- Berset T, Hoier EF, Battu G, et al. Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 2001 ; 291 : 1055-8. [Google Scholar]
- Kim SH, Kwon HB, Kim YS, et al. Isolation and characterization of a Drosophila homologue of mitogen-activated protein kinase phosphatase-3 which has a high substrate specificity towards extracellular-signal-regulated kinase. Biochem J 2002 ; 361 : 143-51. [Google Scholar]
- Rintelen F, Hafen E, Nairz K. The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 2003 ; 130 : 3479-90. [Google Scholar]
- Gomez AR, Lopez-Varea A, Molnar C, et al. Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 2005 ; 232 : 695-708. [Google Scholar]
- Baril C, Therrien M. Alphabet, a Ser/Thr phosphatase of the protein phosphatase 2C family, negatively regulates RAS/MAPK signaling in Drosophila. Dev Biol 2006 ; 294 : 232-45. [Google Scholar]
- Baril C, Sahmi M, Ashton-Beaucage D, et al. The PP2C alphabet is a negative regulator of stress-activated protein kinase signaling in Drosophila. Genetics 2009 ; 181 : 567-79. [Google Scholar]
- Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005 ; 120 : 635-47. [Google Scholar]
- Lee MH, Hook B, Pan G, et al. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 2007 ; 3 : e233. [Google Scholar]
- Ashton-Beaucage D, Udell CM, Lavoie H, et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 2010 ; 143 : 251-62. [Google Scholar]
- Roignant JY, Treisman JE. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 2010 ; 143 : 238-50. [Google Scholar]
- Friedman A, Perrimon N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 2006 ; 444 : 230-4. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.