Free Access
Issue |
Med Sci (Paris)
Volume 26, Number 11, Novembre 2010
|
|
---|---|---|
Page(s) | 960 - 968 | |
Section | Resistance aux antibiotiques : un enjeu international | |
DOI | https://doi.org/10.1051/medsci/20102611960 | |
Published online | 15 November 2010 |
- Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 1999; 27 : 887-92. [Google Scholar]
- National nosocomial infections surveillance (NNIS) system report, data summary from October 1986- April 1998, issued June 1998. Am J Infect Control 1998; 26 : 522-33. [Google Scholar]
- Réseau REA-RAISIN. Rapport pour l’année 2007. URL : http://www.cclinparisnord.org/REACAT/REA2007/rea_raisin_resultats_2007.pdf (consulté le 9 juillet 2010). [Google Scholar]
- Emerson J, McNamara S, Buccat AM, et al. Changes in cystic fibrosis sputum microbiology in the United States between 1995 and 2008. Pediatr Pulmonol 2010; 45 : 363-70. [Google Scholar]
- Flamm RK, Weaver MK, Thornsberry C, et al. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother 2004; 48 : 2431-6. [Google Scholar]
- Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34 : 634-40. [Google Scholar]
- Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48 : 4606-10. [Google Scholar]
- Aloush V, Navon-Venezia S, Seigman-Igra Y, et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006; 50 : 43-8. [Google Scholar]
- Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 2008; 52 : 813-21. [Google Scholar]
- Shorr AF. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med 2009; 37 : 1463-9. [Google Scholar]
- Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22 : 582-610. [Google Scholar]
- Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 2006; 43 (suppl 2) : S49-56. [Google Scholar]
- Juan C, Gutierrez O, Oliver A, et al. Contribution of clonal dissemination and selection of mutants during therapy to Pseudomonas aeruginosa antimicrobial resistance in an intensive care unit setting. Clin Microbiol Infect 2005; 11 : 887-92. [Google Scholar]
- Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43 : 1379-82. [Google Scholar]
- European committee on antimicrobial susceptibility testing. URL: http://www.eucast.org/ mic_distributions/(consulté le : 9 juillet 2010). [Google Scholar]
- Dubois V, Arpin C, Melon M, et al. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of beta-lactam resistance. J Clin Microbiol 2001; 39 : 2072-8. [Google Scholar]
- Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic- resistant Pseudomonas aeruginosa. J Clin Microbiol 2005; 43 : 1198-204. [Google Scholar]
- Lolans K, Queenan AM, Bush K, et al. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005; 49 : 3538-40. [Google Scholar]
- Jones ME, Draghi DC, Thornsberry C, et al. Emerging resistance among bacterial pathogens in the intensive care unit: a European and North American surveillance study (2000-2002). Ann Clin Microbiol Antimicrob 2004; 3 : 14. [Google Scholar]
- Zhanel GG, DeCorby M, Laing N, et al. Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian national intensive care unit (CAN-ICU) study, 2005-2006. Antimicrob Agents Chemother 2008; 52 : 1430-7. [Google Scholar]
- European antimicrobial resistance surveillance system-EARSS annual report 2008. URL: http://www.rivm.nl/earss/Images/EARSS%202008_final_tcm61-65020.pdf (consulté le 14 avril 2010). [Google Scholar]
- Lockhart SR, Abramson MA, Beekmann SE, et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol 2007; 45 : 3352-9. [Google Scholar]
- Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2005; 171 : 1209- 23. [Google Scholar]
- Lambiase A, Raia V, Del Pezzo M, et al. Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis 2006; 6 : 4. [Google Scholar]
- George AM, Jones PM, Middleton PG. Cystic fibrosis infections: treatment strategies and prospects. FEMS Microbiol Lett 2009; 300 : 153-64. [Google Scholar]
- Agodi A, Barchitta M, Cipresso R, et al. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med 2007; 33 : 1155-61. [Google Scholar]
- Johnson JK, Smith G, Lee MS, et al. The role of patient-to-patient transmission in the acquisition of imipenem-resistant Pseudomonas aeruginosa colonization in the intensive care unit. J Infect Dis 2009; 200 : 900-5. [Google Scholar]
- Jonas D, Meyer E, Schwab F, Grundmann H. Genodiversity of resistant Pseudomonas aeruginosa isolates in relation to antimicrobial usage density and resistance rates in intensive care units. Infect Control Hosp Epidemiol 2008; 29 : 350-7. [Google Scholar]
- Ortega B, Groeneveld AB, Schultsz C. Endemic multidrug-resistant Pseudomonas aeruginosa in critically ill patients. Infect Control Hosp Epidemiol 2004; 25 : 825-31. [Google Scholar]
- Paramythiotou E, Lucet JC, Timsit JF, et al. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 2004; 38 : 670-7. [Google Scholar]
- Furtado GH, Bergamasco MD, Menezes FG, et al. Imipenem-resistant Pseudomonas aeruginosa infection at a medical-surgical intensive care unit: risk factors and mortality. J Crit Care 2009; 24 : 625 e9-14. [Google Scholar]
- Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165 : 867-903. [Google Scholar]
- American thoracic society/Infectious diseases society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 : 388-416. [Google Scholar]
- Falagas ME, Rafailidis PI. When to include polymyxins in the empirical antibiotic regimen in critically ill patients with fever? A decision analysis approach. Shock 2007; 27 : 605-9. [Google Scholar]
- Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 2005; 40 : 1333-41. [Google Scholar]
- Sobieszczyk ME, Furuya EY, Hay CM, et al. Combination therapy with polymyxin B for the treatment of multidrug-resistant Gram-negative respiratory tract infections. J Antimicrob Chemother 2004; 54 : 566-9. [Google Scholar]
- Falagas ME, Rafailidis PI, Ioannidou E, et al. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents 2010; 35 : 194-9. [Google Scholar]
- Linden PK, Paterson DL. Parenteral and inhaled colistin for treatment of ventilator-associated pneumonia. Clin Infect Dis 2006; 43 (suppl 2) : S89-94. [Google Scholar]
- Kofteridis D, Valachis A, Alexopoulou C, et al. Aerosolized in combination with intravenous colistin vs. intravenous colistin in the treatment of ventilator- associated pneumonia : a matched case-control study. Wien, Austria : 20th European Congress of clinical microbiology and infectious diseases, 2010 (Poster n° 1545). [Google Scholar]
- Rahal JJ. Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 2006; 43 (suppl 2) : S95-9. [Google Scholar]
- Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram- negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 2009; 34 : 111-20. [Google Scholar]
- Kohler T, Perron GG, Buckling A, van Delden C. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 2010; 6 : e1000883. [Google Scholar]
- Giamarellos-Bourboulis EJ, Pechere JC, Routsi C, et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin Infect Dis 2008; 46 : 1157-64. [Google Scholar]
- Baer M, Sawa T, Flynn P, et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun 2009; 77 : 1083-90. [Google Scholar]
- Nordmann P. Resistance aux carbapénèmes chez les bacilles à Gram négatif. Med Sci (Paris) 2010; 26 : 950-9. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.