Free Access
Issue
Med Sci (Paris)
Volume 26, Number 8-9, Août-Septembre 2010
Page(s) 753 - 759
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010268-9753
Published online 15 August 2010
  1. Collins FS, Guyer M, Peterson J, et al. Finishing the euchromatic sequence of the human genome. Nature 2004 ; 431 : 931-45. [Google Scholar]
  2. Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984 ; 259 : 3308-17. [Google Scholar]
  3. Holt GD, Hart GW. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 1986 ; 261 : 8049-57. [Google Scholar]
  4. Schindler M, Hogan M, Miller R, et al. A nuclear specific glycoprotein representative of a unique pattern of glycosylation. J Biol Chem 1987 ; 262 : 1254-60. [Google Scholar]
  5. Haltiwanger RS, Kelly WG, Roquemore EP, et al. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 1992 ; 20 : 264-9. [Google Scholar]
  6. Hanover JA. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEBJ 2001 ; 15 : 1865-76. [Google Scholar]
  7. Lubas WA, Frank DW, Krause M, et al. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 1997 ; 272 : 9316-24. [Google Scholar]
  8. Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 1997 ; 272 : 9308-15. [Google Scholar]
  9. Gao Y, Wells L, Comer FI, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001 ; 276 : 9838-45. [Google Scholar]
  10. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991 ; 266 : 4706-12. [Google Scholar]
  11. Lefebvre T, Dehennaut V, Guinez C, et al. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 2009 ; 1800 : 67-79. [Google Scholar]
  12. Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008 ; 19 : 380-9. [Google Scholar]
  13. Yang WH, Kim JE, Nam HW, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 2006 ; 8 : 1074-83. [Google Scholar]
  14. Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem 2001 : 276 : 10570-5. [Google Scholar]
  15. Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 2007 ; 282 : 15589-96. [Google Scholar]
  16. Dentin R, Hedrick S, Xie J, et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008 ; 319 : 1402-5. [Google Scholar]
  17. Kuo M, Zilberfarb V, Gangneux N, et al. Un nouveau mode de régulation de FoxO1 par O-glycosylation : implication dans le phénomène de glucotoxicité. Med Sci (Paris) 2008 ; 24 : 369-71. [Google Scholar]
  18. Kuo M, Zilberfarb V, Gangneux N, et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 2008 ; 582 : 829-34. [Google Scholar]
  19. Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001 ; 108 : 1341-8. [Google Scholar]
  20. Musicki B, Kramer MF, Becker RE, et al. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 2005 ; 102 : 11870-5. [Google Scholar]
  21. Wells L, Kreppel LK, Comer FI, et al. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 2004 ; 279 : 38466-70. [Google Scholar]
  22. Kuo M, Zilberfarb V, Gangneux N, et al. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie 2008 : 90 : 679-85. [Google Scholar]
  23. Lehman DM, Fu DJ, Freeman AB, et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 2005 ; 54 : 1214-21. [Google Scholar]
  24. Lefebvre T, Guinez C, Dehennaut V, et al. Does O-GlcNAc play a role in neurodegenerative diseases? Exp RevProteomics 2005 ; 2 : 265-75. [Google Scholar]
  25. Lefebvre T, Ferreira S, Dupont-Wallois L, et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization. Biochim Biophys Acta 2003 ; 1619 : 167-76. [Google Scholar]
  26. Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 2009 ; 132 : 1820-32. [Google Scholar]
  27. Cooksey RC, McClain DA. Transgenic mice overexpressing the rate-limiting enzyme for hexosamine synthesis in skeletal muscle or adipose tissue exhibit total body insulin resistance. Ann NY Acad Sci 2002 ; 967 : 102-11. [Google Scholar]
  28. Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the O-GlcNAc code. SciSTKE 2005 ; 312 : re13. [Google Scholar]
  29. Combettes-Souverain M, Issad T. Molecular basis of insulin action. Diabetes Metab 1998 ; 24 : 477-89. [Google Scholar]
  30. Yang X, Ongusaha PP, Miles PD, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008 ; 451 : 964-9. [Google Scholar]
  31. Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 1999 ; 274 : 32015-22. [Google Scholar]
  32. Hanover JA, Yu S, Lubas WB, et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003 ; 409 : 287-97. [Google Scholar]
  33. Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 2000 ; 275: 10983-8. [Google Scholar]
  34. Hu Y, Suarez J, Fricovsky E, et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 2009 ; 284 : 547-55. [Google Scholar]
  35. Iyer SP, Akimoto Y, Hart GW. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem 2003 ; 278 : 5399-409. [Google Scholar]
  36. Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 2008 ; 283 : 13009-20. [Google Scholar]
  37. Cheung WD, Sakabe K, Housley MP, et al. O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J Biol Chem 2008 ; 283 : 33935-41. [Google Scholar]
  38. Song M, Kim HS, Park JM, et al. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 2008 ; 20 : 94-104. [Google Scholar]
  39. Whelan SA, Lane MD, Hart GW. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 2008 ; 283 : 21411-7. [Google Scholar]
  40. Plimmer RH, Bayliss WM. The separation of phosphorus from caseinogen by the action of enzymes and alkali. J Physiol 1906 ; 33 : 439-61. [Google Scholar]
  41. Krebs EG. Nobel Lecture. Protein phosphorylation and cellular regulation I. Biosci Rep 1993 ; 13 : 127-42. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.