Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 8-9, Août-Septembre 2010
Page(s) 753 - 759
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010268-9753
Publié en ligne 15 août 2010
  1. Collins FS, Guyer M, Peterson J, et al. Finishing the euchromatic sequence of the human genome. Nature 2004 ; 431 : 931-45.
  2. Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984 ; 259 : 3308-17.
  3. Holt GD, Hart GW. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 1986 ; 261 : 8049-57.
  4. Schindler M, Hogan M, Miller R, et al. A nuclear specific glycoprotein representative of a unique pattern of glycosylation. J Biol Chem 1987 ; 262 : 1254-60.
  5. Haltiwanger RS, Kelly WG, Roquemore EP, et al. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 1992 ; 20 : 264-9.
  6. Hanover JA. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEBJ 2001 ; 15 : 1865-76.
  7. Lubas WA, Frank DW, Krause M, et al. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 1997 ; 272 : 9316-24.
  8. Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 1997 ; 272 : 9308-15.
  9. Gao Y, Wells L, Comer FI, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001 ; 276 : 9838-45.
  10. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991 ; 266 : 4706-12.
  11. Lefebvre T, Dehennaut V, Guinez C, et al. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 2009 ; 1800 : 67-79.
  12. Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 2008 ; 19 : 380-9.
  13. Yang WH, Kim JE, Nam HW, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 2006 ; 8 : 1074-83.
  14. Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem 2001 : 276 : 10570-5.
  15. Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 2007 ; 282 : 15589-96.
  16. Dentin R, Hedrick S, Xie J, et al. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008 ; 319 : 1402-5.
  17. Kuo M, Zilberfarb V, Gangneux N, et al. Un nouveau mode de régulation de FoxO1 par O-glycosylation : implication dans le phénomène de glucotoxicité. Med Sci (Paris) 2008 ; 24 : 369-71.
  18. Kuo M, Zilberfarb V, Gangneux N, et al. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett 2008 ; 582 : 829-34.
  19. Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001 ; 108 : 1341-8.
  20. Musicki B, Kramer MF, Becker RE, et al. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 2005 ; 102 : 11870-5.
  21. Wells L, Kreppel LK, Comer FI, et al. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem 2004 ; 279 : 38466-70.
  22. Kuo M, Zilberfarb V, Gangneux N, et al. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie 2008 : 90 : 679-85.
  23. Lehman DM, Fu DJ, Freeman AB, et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 2005 ; 54 : 1214-21.
  24. Lefebvre T, Guinez C, Dehennaut V, et al. Does O-GlcNAc play a role in neurodegenerative diseases? Exp RevProteomics 2005 ; 2 : 265-75.
  25. Lefebvre T, Ferreira S, Dupont-Wallois L, et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization. Biochim Biophys Acta 2003 ; 1619 : 167-76.
  26. Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 2009 ; 132 : 1820-32.
  27. Cooksey RC, McClain DA. Transgenic mice overexpressing the rate-limiting enzyme for hexosamine synthesis in skeletal muscle or adipose tissue exhibit total body insulin resistance. Ann NY Acad Sci 2002 ; 967 : 102-11.
  28. Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the O-GlcNAc code. SciSTKE 2005 ; 312 : re13.
  29. Combettes-Souverain M, Issad T. Molecular basis of insulin action. Diabetes Metab 1998 ; 24 : 477-89.
  30. Yang X, Ongusaha PP, Miles PD, et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008 ; 451 : 964-9.
  31. Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 1999 ; 274 : 32015-22.
  32. Hanover JA, Yu S, Lubas WB, et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003 ; 409 : 287-97.
  33. Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 2000 ; 275: 10983-8.
  34. Hu Y, Suarez J, Fricovsky E, et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 2009 ; 284 : 547-55.
  35. Iyer SP, Akimoto Y, Hart GW. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem 2003 ; 278 : 5399-409.
  36. Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 2008 ; 283 : 13009-20.
  37. Cheung WD, Sakabe K, Housley MP, et al. O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. J Biol Chem 2008 ; 283 : 33935-41.
  38. Song M, Kim HS, Park JM, et al. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells. Cell Signal 2008 ; 20 : 94-104.
  39. Whelan SA, Lane MD, Hart GW. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 2008 ; 283 : 21411-7.
  40. Plimmer RH, Bayliss WM. The separation of phosphorus from caseinogen by the action of enzymes and alkali. J Physiol 1906 ; 33 : 439-61.
  41. Krebs EG. Nobel Lecture. Protein phosphorylation and cellular regulation I. Biosci Rep 1993 ; 13 : 127-42.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.