Free Access
Med Sci (Paris)
Volume 26, Number 4, Avril 2010
Page(s) 397 - 404
Section M/S revues
Published online 15 April 2010
  1. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4 : 181–91. [Google Scholar]
  2. Kaufman R, Scheuner D, Schroder M, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002; 3 : 411–21. [Google Scholar]
  3. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101 : 451–4. [Google Scholar]
  4. Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest 2002; 110 : 1383–8. [Google Scholar]
  5. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8 : 519–29. [Google Scholar]
  6. Xu C, Bailly-Maitre B, Reed J. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115 : 2656–64. [Google Scholar]
  7. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454 : 455–62. [Google Scholar]
  8. Bouchecareilh M, Chevet E. Stress du réticulum endoplasmique : une réponse pour éviter le pIRE. Med Sci (Paris) 2009; 25 : 281–7. [Google Scholar]
  9. Nankivell B, Borrows R, Fung C, et al. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349 : 2326–33. [Google Scholar]
  10. Nankivell B, Chapman JR. Chronic allograft nephropathy: current concepts and future directions. Transplantation 2006; 81 : 643–54. [Google Scholar]
  11. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004; 279 : 25935–8. [Google Scholar]
  12. Aragón T, van Anken E, Pincus D, et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2009; 457 : 687–93. [Google Scholar]
  13. Korennykh A, Egea P, Korostelev A, et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 2009; 457 : 687–93. [Google Scholar]
  14. Han D, Lerner A, Vande Walle L, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138 : 562–75. [Google Scholar]
  15. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11 : 381–9. [Google Scholar]
  16. Montie H, Haezebrouck A, Gutwald J, DeGracia D. PERK is activated differentially in peripheral organs following cardiac arrest and resuscitation. Resuscitation 2005; 66 : 379–89. [Google Scholar]
  17. Kuznetsov G, Bush K, Zhang P, Nigam S. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci USA 1996; 93 : 8584–9. [Google Scholar]
  18. Bando Y, Tsukamoto Y, Katayama T, et al. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. Faseb J 2004; 18 : 1401–3. [Google Scholar]
  19. Emadali A, Nguyen D, Rochon C, et al. Distinct endoplasmic reticulum stress responses are triggered during human liver transplantation. J Pathol 2005; 207 : 111–8. [Google Scholar]
  20. Theruvath T, Czerny C, Ramsheh V. C-Jun N-terminal kinase 2 promotes injury via the mitochondrial permeability transition after mouse liver transplantation. Am J Transplant 2008; 8 : 1819–28. [Google Scholar]
  21. Boutros T, Nantel A, Emadali A, Tzimas G. The MAP Kinase phosphatase 1MKP-1/DUSP1 is a regulator of human liver response to transplantation. Am J Transplant 2008; 8 : 2558–68. [Google Scholar]
  22. Theruvath T, Snoddy M, Zhong Z. Mitochondrial permeability transition in liver ischemia and reperfusion: role of th c-jun N-terminal kinase 2. Transplantation 2008; 85 : 1500–4. [Google Scholar]
  23. Eberl T, Salvenmoser W, Rieger G, et al. Ultrastructural analysis of human endothelial cells after hypothermic storage in organ preservation solutions. J Surg Res 1999; 82 : 253–60. [Google Scholar]
  24. Moers C, Smits J, Maathuis M. Machine reperfusion or cold storage in deceased-donor kidney transplantation. N Eng J Med 2009; 360 : 7–19. [Google Scholar]
  25. Minor T, Manekeller S, Sioutis M, Dombrowski F. Endoplasmic and vascular surface activation during organ preservation: refining upon the benefits of machine perfusion. Am J Transplant 2006; 6 : 1355–66. [Google Scholar]
  26. Dutkowski P, Krug A, Kryiak M, Dunschede F. Detection of mitochondrial electron chain carrier redox staus by transhepatic light intensity during rat liver reperfusion. Cryobiology 2003; 47 : 125–42. [Google Scholar]
  27. Harding H, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7 : 1153–63. [Google Scholar]
  28. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7 : 1013–30. [Google Scholar]
  29. Oyadomari S, Koizumi A, Takeda K, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002; 109 : 525–32. [Google Scholar]
  30. Scheuner D, Kaufaman R. The unfolded protein response: A pathway that links insulin demand with beta-cell failure and death. Endocr Rev 2008; 29 : 317. [Google Scholar]
  31. Balla A, Chobanian M. New-onset diabetes after transplantation: a review of recent literature. Curr Opin Organ Transplant 2009; 14 : 375–9. [Google Scholar]
  32. Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes Metab 2006; 32 : 539–46. [Google Scholar]
  33. Drachenberg C, Klassen D, Weir M. Islet damage asociated with tacrolimus and cyclosporine: morphological features in pancrease allograft biopsies and clinical correlation. Transplantation 1999; 68 : 396–402. [Google Scholar]
  34. Sahl B. c-Jun N-terminal kinases as potential therapeutic targets. Expert Opin Ther Targets 2007; 11 : 1339–53. [Google Scholar]
  35. Justo P, Lorz C, Sanz A, Egido J, Ortiz A. Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol 2003; 14 : 3072–80. [Google Scholar]
  36. Pallet N, Bouvier N, Bendjallabah A, et al. Endoplasmic reticulum stress triggers tubular phenotypic changes and death induced by cyclosporine. Am J Transplant 2008; 11 : 2283–96. [Google Scholar]
  37. Han SW, Li C, Ahn K, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol 2008; 28 : 707–14. [Google Scholar]
  38. Smith W, Pei Z, Tanaka Y, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 2005; 14 : 3801–11. [Google Scholar]
  39. Desai K, Dikdan G, Shareef A, Koneru B. Ischemic preconditioning of the liver: a few perspective from the bench to the bedside translation. Liver Transpl 2008; 14 : 1569–77. [Google Scholar]
  40. Prachasilchai W, Sonoda H, Yokota-Ikeda N. A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur J Pharamcol 2008; 592 : 138–45. [Google Scholar]
  41. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004; 66 : 899–908. [Google Scholar]
  42. Izuhara Y, Nangaku M, Takizawa S, et al. A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant 2008; 23 : 497–509. [Google Scholar]
  43. Kudo T, Kanamoto S, Hara H, et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 2008; 15 : 364–75. [Google Scholar]
  44. Hynes J Jr, Leftheri K. Small molecule p38 inhibitors: novel structural features and advances from 2002-2005. Curr Top Med Chem 2005; 5 : 967–85. [Google Scholar]
  45. Durand F, Belghiti J. Transplantation hépatique chez l’adulte. Med Sci (Paris) 2005; 21 : 89–94. [Google Scholar]
  46. Foufelle F, Ferré P. La réponse UPR : son rôle physiologique et physiopathologique. Med Sci (Paris) 2007; 23 : 291–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.