Accès gratuit
Med Sci (Paris)
Volume 26, Numéro 4, Avril 2010
Page(s) 397 - 404
Section M/S revues
Publié en ligne 15 avril 2010
  1. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4 : 181–91. [Google Scholar]
  2. Kaufman R, Scheuner D, Schroder M, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002; 3 : 411–21. [Google Scholar]
  3. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101 : 451–4. [Google Scholar]
  4. Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest 2002; 110 : 1383–8. [Google Scholar]
  5. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8 : 519–29. [Google Scholar]
  6. Xu C, Bailly-Maitre B, Reed J. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115 : 2656–64. [Google Scholar]
  7. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454 : 455–62. [Google Scholar]
  8. Bouchecareilh M, Chevet E. Stress du réticulum endoplasmique : une réponse pour éviter le pIRE. Med Sci (Paris) 2009; 25 : 281–7. [Google Scholar]
  9. Nankivell B, Borrows R, Fung C, et al. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349 : 2326–33. [Google Scholar]
  10. Nankivell B, Chapman JR. Chronic allograft nephropathy: current concepts and future directions. Transplantation 2006; 81 : 643–54. [Google Scholar]
  11. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004; 279 : 25935–8. [Google Scholar]
  12. Aragón T, van Anken E, Pincus D, et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2009; 457 : 687–93. [Google Scholar]
  13. Korennykh A, Egea P, Korostelev A, et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 2009; 457 : 687–93. [Google Scholar]
  14. Han D, Lerner A, Vande Walle L, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138 : 562–75. [Google Scholar]
  15. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11 : 381–9. [Google Scholar]
  16. Montie H, Haezebrouck A, Gutwald J, DeGracia D. PERK is activated differentially in peripheral organs following cardiac arrest and resuscitation. Resuscitation 2005; 66 : 379–89. [Google Scholar]
  17. Kuznetsov G, Bush K, Zhang P, Nigam S. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci USA 1996; 93 : 8584–9. [Google Scholar]
  18. Bando Y, Tsukamoto Y, Katayama T, et al. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. Faseb J 2004; 18 : 1401–3. [Google Scholar]
  19. Emadali A, Nguyen D, Rochon C, et al. Distinct endoplasmic reticulum stress responses are triggered during human liver transplantation. J Pathol 2005; 207 : 111–8. [Google Scholar]
  20. Theruvath T, Czerny C, Ramsheh V. C-Jun N-terminal kinase 2 promotes injury via the mitochondrial permeability transition after mouse liver transplantation. Am J Transplant 2008; 8 : 1819–28. [Google Scholar]
  21. Boutros T, Nantel A, Emadali A, Tzimas G. The MAP Kinase phosphatase 1MKP-1/DUSP1 is a regulator of human liver response to transplantation. Am J Transplant 2008; 8 : 2558–68. [Google Scholar]
  22. Theruvath T, Snoddy M, Zhong Z. Mitochondrial permeability transition in liver ischemia and reperfusion: role of th c-jun N-terminal kinase 2. Transplantation 2008; 85 : 1500–4. [Google Scholar]
  23. Eberl T, Salvenmoser W, Rieger G, et al. Ultrastructural analysis of human endothelial cells after hypothermic storage in organ preservation solutions. J Surg Res 1999; 82 : 253–60. [Google Scholar]
  24. Moers C, Smits J, Maathuis M. Machine reperfusion or cold storage in deceased-donor kidney transplantation. N Eng J Med 2009; 360 : 7–19. [Google Scholar]
  25. Minor T, Manekeller S, Sioutis M, Dombrowski F. Endoplasmic and vascular surface activation during organ preservation: refining upon the benefits of machine perfusion. Am J Transplant 2006; 6 : 1355–66. [Google Scholar]
  26. Dutkowski P, Krug A, Kryiak M, Dunschede F. Detection of mitochondrial electron chain carrier redox staus by transhepatic light intensity during rat liver reperfusion. Cryobiology 2003; 47 : 125–42. [Google Scholar]
  27. Harding H, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7 : 1153–63. [Google Scholar]
  28. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7 : 1013–30. [Google Scholar]
  29. Oyadomari S, Koizumi A, Takeda K, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002; 109 : 525–32. [Google Scholar]
  30. Scheuner D, Kaufaman R. The unfolded protein response: A pathway that links insulin demand with beta-cell failure and death. Endocr Rev 2008; 29 : 317. [Google Scholar]
  31. Balla A, Chobanian M. New-onset diabetes after transplantation: a review of recent literature. Curr Opin Organ Transplant 2009; 14 : 375–9. [Google Scholar]
  32. Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes Metab 2006; 32 : 539–46. [Google Scholar]
  33. Drachenberg C, Klassen D, Weir M. Islet damage asociated with tacrolimus and cyclosporine: morphological features in pancrease allograft biopsies and clinical correlation. Transplantation 1999; 68 : 396–402. [Google Scholar]
  34. Sahl B. c-Jun N-terminal kinases as potential therapeutic targets. Expert Opin Ther Targets 2007; 11 : 1339–53. [Google Scholar]
  35. Justo P, Lorz C, Sanz A, Egido J, Ortiz A. Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol 2003; 14 : 3072–80. [Google Scholar]
  36. Pallet N, Bouvier N, Bendjallabah A, et al. Endoplasmic reticulum stress triggers tubular phenotypic changes and death induced by cyclosporine. Am J Transplant 2008; 11 : 2283–96. [Google Scholar]
  37. Han SW, Li C, Ahn K, et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am J Nephrol 2008; 28 : 707–14. [Google Scholar]
  38. Smith W, Pei Z, Tanaka Y, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 2005; 14 : 3801–11. [Google Scholar]
  39. Desai K, Dikdan G, Shareef A, Koneru B. Ischemic preconditioning of the liver: a few perspective from the bench to the bedside translation. Liver Transpl 2008; 14 : 1569–77. [Google Scholar]
  40. Prachasilchai W, Sonoda H, Yokota-Ikeda N. A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur J Pharamcol 2008; 592 : 138–45. [Google Scholar]
  41. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004; 66 : 899–908. [Google Scholar]
  42. Izuhara Y, Nangaku M, Takizawa S, et al. A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant 2008; 23 : 497–509. [Google Scholar]
  43. Kudo T, Kanamoto S, Hara H, et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 2008; 15 : 364–75. [Google Scholar]
  44. Hynes J Jr, Leftheri K. Small molecule p38 inhibitors: novel structural features and advances from 2002-2005. Curr Top Med Chem 2005; 5 : 967–85. [Google Scholar]
  45. Durand F, Belghiti J. Transplantation hépatique chez l’adulte. Med Sci (Paris) 2005; 21 : 89–94. [Google Scholar]
  46. Foufelle F, Ferré P. La réponse UPR : son rôle physiologique et physiopathologique. Med Sci (Paris) 2007; 23 : 291–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.