Free Access
Med Sci (Paris)
Volume 26, Number 4, Avril 2010
Page(s) 377 - 383
Section M/S revues
Published online 15 April 2010
  1. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 2002; 14 : 25–34. [Google Scholar]
  2. Karess R. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 2005; 15 : 386–92. [Google Scholar]
  3. Giet R, Prigent C. Contrôle de la détermination cellulaire par les centrosomes. Med Sci (Paris) 2003; 19 : 656–8. [Google Scholar]
  4. Boveri T. Zur Frage der Entstehung maligner Tumoren. Jena : Verlag von Gustav Fischer, 1914. [Google Scholar]
  5. Nigg EA. Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 2006; 119 : 2717–23. [Google Scholar]
  6. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 2005; 15 : 2199–207. [Google Scholar]
  7. Kleylein-Sohn J, Westendorf J, Le Clech M, et al. Plk4-induced centriole biogenesis in human cells. Dev Cell 2007; 13 : 190–202. [Google Scholar]
  8. Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 2005; 21 : 411–34. [Google Scholar]
  9. Mikule K, Delaval B, Kaldis P, et al. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 2007; 9 : 160–70. [Google Scholar]
  10. La Terra S, English CN, Hergert P, et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 2005; 168 : 713–22. [Google Scholar]
  11. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460 : 278–82. [Google Scholar]
  12. Basto R, Brunk K, Vinadogrova T, et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 2008; 133 : 1032–42. [Google Scholar]
  13. Murphy TD. Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 2003; 116 : 2321–32. [Google Scholar]
  14. Quintyne NJ, Reing JE, Hoffelder DR, et al. Spindle multipolarity is prevented by centrosomal clustering. Science 2005; 307 : 127–9. [Google Scholar]
  15. Ring D, Hubble R, Kirschner M. Mitosis in a cell with multiple centrioles. J Cell Biol 1982; 94 : 549–56. [Google Scholar]
  16. Cimini D, Howell B, Maddox P, et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 2001; 153 : 517–27. [Google Scholar]
  17. Silkworth WT, Nardi IK, Scholl LM, Cimini D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 2009; 4 : e6564. [Google Scholar]
  18. Saunders W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol 2005; 15 : 25–32. [Google Scholar]
  19. Goshima G, Nedelec F, Vale RD. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 2005; 171 : 229–40. [Google Scholar]
  20. Gergely F, Basto R. Multiple centrosomes: together they stand, divided they fall. Genes Dev 2008; 22 : 2291–6. [Google Scholar]
  21. Kwon M, Godinho SA, Chandhok NS, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008; 22 : 2189–203. [Google Scholar]
  22. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8 : 379–93. [Google Scholar]
  23. Yang Z, Loncarek J, Khodjakov A, Rieder CL. Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 2008; 10 : 748–51. [Google Scholar]
  24. Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 2005; 7 : 947–53. [Google Scholar]
  25. Thery M, Jimenez-Dalmaroni A, Racine V, et al. Experimental and theoretical study of mitotic spindle orientation. Nature 2007; 447 : 493–6. [Google Scholar]
  26. Thery M, Bornens M. L’adhérence guide la polarité cellulaire. Med Sci (Paris) 2007; 23 : 230–2. [Google Scholar]
  27. Godinho SA, Kwon M, Pellman D. Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 2009; 28 : 85–98. [Google Scholar]
  28. Cheng J, Turkel N, Hemati N, et al. Centrosome misorientation reduces stem cell division during ageing. Nature 2008; 456 : 599–604. [Google Scholar]
  29. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007; 315 : 518–21. [Google Scholar]
  30. Yu F, Kuo CT, Jan YN. Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 2006; 51 : 13–20. [Google Scholar]
  31. Lee CY, Andersen RO, Cabernard C, et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 2006; 20 : 3464–74. [Google Scholar]
  32. Yamashita YM, Fuller MT. Asymmetric centrosome behavior and the mechanisms of stem cell division. J Cell Biol 2008; 180 : 261–6. [Google Scholar]
  33. Bowman SK, Neumuller RA, Novatchkova M, et al. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 2006; 10 : 731–42. [Google Scholar]
  34. Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006; 124 : 1241–53. [Google Scholar]
  35. Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nat Cell Biol 2009; 11 : 365–74. [Google Scholar]
  36. Gonzalez C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 2007; 8 : 462–72. [Google Scholar]
  37. Basto R, Lau J, Vinogradova T, et al. Flies without centrioles. Cell 2006; 125 : 1375–86. [Google Scholar]
  38. Hudson JW, Kozarova A, Cheung P, et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 2001; 11 : 441–6. [Google Scholar]
  39. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005; 37 : 1125–9. [Google Scholar]
  40. Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 2006; 133 : 2639–48. [Google Scholar]
  41. Anderson CT, Stearns T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 2009; 19 : 1498–502. [Google Scholar]
  42. D’Angelo A, Franco B. The dynamic cilium in human diseases. Pathogenetics 2009; 2 : 3. [Google Scholar]
  43. Han YG, Kim HJ, Dlugosz AA, et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009; 15 : 1062–5. [Google Scholar]
  44. Wong SY, Seol AD, So PL, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15 : 1055–61. [Google Scholar]
  45. Plotnikova OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008; 68 : 2058–61. [Google Scholar]
  46. Benzing T, Walz G. Cilium-generated signaling: a cellular GPS ? Curr Opin Nephrol Hypertens 2006; 15 : 245–9. [Google Scholar]
  47. Chartier NT, Hyenne V, Labbé JC. Mécanismes de division cellulaire asymétrique : des organismes modèles au développement tumoral. Med Sci (Paris) 2010; 26 : 251–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.