Accès gratuit
Numéro |
Med Sci (Paris)
Volume 26, Numéro 4, Avril 2010
|
|
---|---|---|
Page(s) | 377 - 383 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2010264377 | |
Publié en ligne | 15 avril 2010 |
- Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 2002; 14 : 25–34. [Google Scholar]
- Karess R. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 2005; 15 : 386–92. [Google Scholar]
- Giet R, Prigent C. Contrôle de la détermination cellulaire par les centrosomes. Med Sci (Paris) 2003; 19 : 656–8. [Google Scholar]
- Boveri T. Zur Frage der Entstehung maligner Tumoren. Jena : Verlag von Gustav Fischer, 1914. [Google Scholar]
- Nigg EA. Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 2006; 119 : 2717–23. [Google Scholar]
- Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 2005; 15 : 2199–207. [Google Scholar]
- Kleylein-Sohn J, Westendorf J, Le Clech M, et al. Plk4-induced centriole biogenesis in human cells. Dev Cell 2007; 13 : 190–202. [Google Scholar]
- Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 2005; 21 : 411–34. [Google Scholar]
- Mikule K, Delaval B, Kaldis P, et al. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 2007; 9 : 160–70. [Google Scholar]
- La Terra S, English CN, Hergert P, et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 2005; 168 : 713–22. [Google Scholar]
- Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460 : 278–82. [Google Scholar]
- Basto R, Brunk K, Vinadogrova T, et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 2008; 133 : 1032–42. [Google Scholar]
- Murphy TD. Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 2003; 116 : 2321–32. [Google Scholar]
- Quintyne NJ, Reing JE, Hoffelder DR, et al. Spindle multipolarity is prevented by centrosomal clustering. Science 2005; 307 : 127–9. [Google Scholar]
- Ring D, Hubble R, Kirschner M. Mitosis in a cell with multiple centrioles. J Cell Biol 1982; 94 : 549–56. [Google Scholar]
- Cimini D, Howell B, Maddox P, et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 2001; 153 : 517–27. [Google Scholar]
- Silkworth WT, Nardi IK, Scholl LM, Cimini D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 2009; 4 : e6564. [Google Scholar]
- Saunders W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol 2005; 15 : 25–32. [Google Scholar]
- Goshima G, Nedelec F, Vale RD. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 2005; 171 : 229–40. [Google Scholar]
- Gergely F, Basto R. Multiple centrosomes: together they stand, divided they fall. Genes Dev 2008; 22 : 2291–6. [Google Scholar]
- Kwon M, Godinho SA, Chandhok NS, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008; 22 : 2189–203. [Google Scholar]
- Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007; 8 : 379–93. [Google Scholar]
- Yang Z, Loncarek J, Khodjakov A, Rieder CL. Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 2008; 10 : 748–51. [Google Scholar]
- Thery M, Racine V, Pepin A, et al. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 2005; 7 : 947–53. [Google Scholar]
- Thery M, Jimenez-Dalmaroni A, Racine V, et al. Experimental and theoretical study of mitotic spindle orientation. Nature 2007; 447 : 493–6. [Google Scholar]
- Thery M, Bornens M. L’adhérence guide la polarité cellulaire. Med Sci (Paris) 2007; 23 : 230–2. [Google Scholar]
- Godinho SA, Kwon M, Pellman D. Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 2009; 28 : 85–98. [Google Scholar]
- Cheng J, Turkel N, Hemati N, et al. Centrosome misorientation reduces stem cell division during ageing. Nature 2008; 456 : 599–604. [Google Scholar]
- Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007; 315 : 518–21. [Google Scholar]
- Yu F, Kuo CT, Jan YN. Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 2006; 51 : 13–20. [Google Scholar]
- Lee CY, Andersen RO, Cabernard C, et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 2006; 20 : 3464–74. [Google Scholar]
- Yamashita YM, Fuller MT. Asymmetric centrosome behavior and the mechanisms of stem cell division. J Cell Biol 2008; 180 : 261–6. [Google Scholar]
- Bowman SK, Neumuller RA, Novatchkova M, et al. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 2006; 10 : 731–42. [Google Scholar]
- Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006; 124 : 1241–53. [Google Scholar]
- Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nat Cell Biol 2009; 11 : 365–74. [Google Scholar]
- Gonzalez C. Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 2007; 8 : 462–72. [Google Scholar]
- Basto R, Lau J, Vinogradova T, et al. Flies without centrioles. Cell 2006; 125 : 1375–86. [Google Scholar]
- Hudson JW, Kozarova A, Cheung P, et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 2001; 11 : 441–6. [Google Scholar]
- Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005; 37 : 1125–9. [Google Scholar]
- Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 2006; 133 : 2639–48. [Google Scholar]
- Anderson CT, Stearns T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 2009; 19 : 1498–502. [Google Scholar]
- D’Angelo A, Franco B. The dynamic cilium in human diseases. Pathogenetics 2009; 2 : 3. [Google Scholar]
- Han YG, Kim HJ, Dlugosz AA, et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009; 15 : 1062–5. [Google Scholar]
- Wong SY, Seol AD, So PL, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15 : 1055–61. [Google Scholar]
- Plotnikova OV, Golemis EA, Pugacheva EN. Cell cycle-dependent ciliogenesis and cancer. Cancer Res 2008; 68 : 2058–61. [Google Scholar]
- Benzing T, Walz G. Cilium-generated signaling: a cellular GPS ? Curr Opin Nephrol Hypertens 2006; 15 : 245–9. [Google Scholar]
- Chartier NT, Hyenne V, Labbé JC. Mécanismes de division cellulaire asymétrique : des organismes modèles au développement tumoral. Med Sci (Paris) 2010; 26 : 251–8. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.